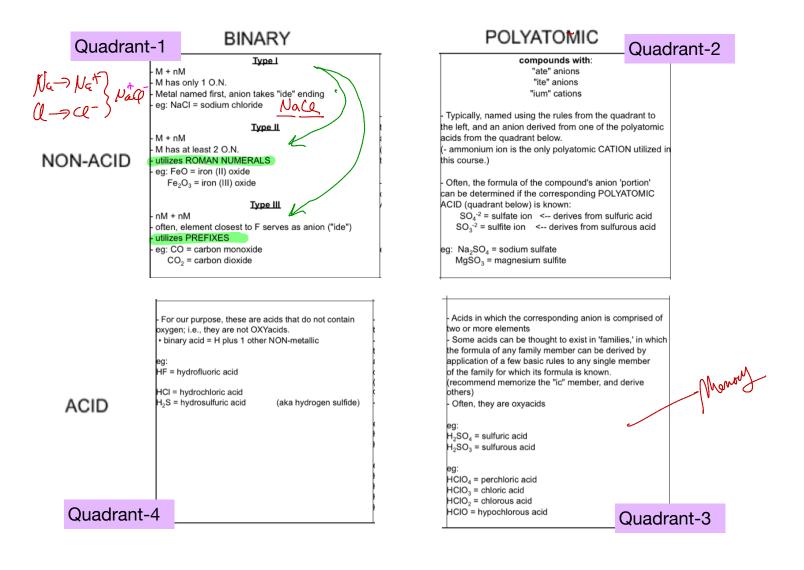
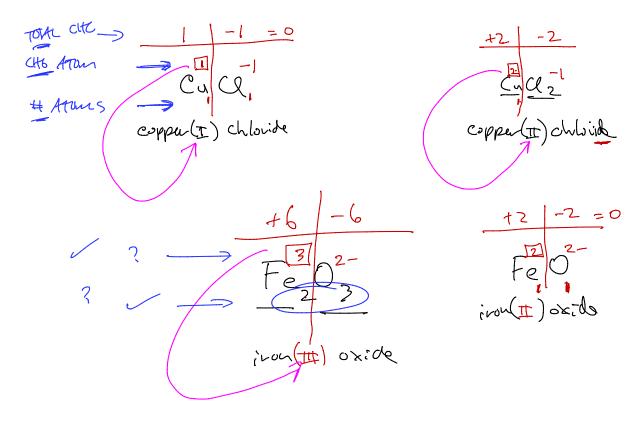


CHAPTER 5 NOMENCLATURE


The Nomenclature Grid – A Helpful Organizational Tool


A tool which attempts to organize the various nomenclature rules into a simplified grid (or table), based on the type of compound being named.

Four categories of compounds

- \hookrightarrow binary non-acids (Quadrant 1)
- → polyatomic non-acids (Quadrant 2)
- \rightarrow polyatonic acids (Quadrant 3)
- → binary acids (Quadrant 4)

.u.	BINARY	POLYATOMIC				
	Type I M + nM M has only 1 O.N. Metal named first, anion takes "ide" ending - eg: NaCI = sodium chloride	compounds with: "ate" anions "ite" anions "ium" cations "ium" cations				
NON-ACID	Type II - M + nM - M has at least 2 O.N. - utilizes ROMAN NUMERALS - eg: FeO = iron (III) oxide Fe ₀ O ₁ = iron (III) oxide	 An an anion derived from one of the polyatom of the polyatom acids from the quadrant below. (+ ammonium ion is the only polyatomic CATION utilize this course.) Often, the formula of the compound's anion 'portion' 				
	Type III - nM + nM - often, element closest to F serves as anion ("ide") - utilizes PREFIXES - eg: CO = carbon monoxide	can be determined if the corresponding POLYATOMIC ACID (quadrant below) is known: SO ₂ ⁻² = sulfate ion < derives from sulfuric acid SO ₃ ⁻² = sulfate ion < derives from sulfurous acid eg: Na ₂ SO ₄ = sodium sulfate				
	CO_2 = carbon dioxide	MgSO ₃ = magnesium sulfite				
	 For our purpose, these are acids that do not contain oxygen; i.e., they are not OXYacids. binary acid = H plus 1 other NON-metallic eg: HF = hydrofluoric acid 	Acids in which the corresponding anion is comprised of two or more elements - Some acids can be thought to exist in 'families,' in which the formula of any family member can be derived by application of a few basic rules to any single member of the family for which its formula is known.				
ACID	HCl = hydrochloric acid H ₂ S = hydrosulfuric acid (aka hydrogen sulfide)	becommended memory and derive between the memory and derive befores) - Often, they are oxyacids eg: $H_2SO_4 =$ sulfuric acid $H_2SO_4 =$ sulfuricus acid				
		eg: HCIO ₄ = perchloric acid HCIO ₃ = chloric acid HCIO ₂ = chlorous acid HCIO = hypochlorous acid				

NO atroja nonoxoto

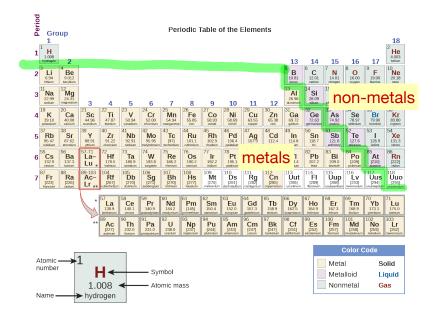
COZ carlos di oxide

N205 din:troge partoxide

H20 H202

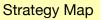
Naming Binary Non-acids (Quadrant 1)

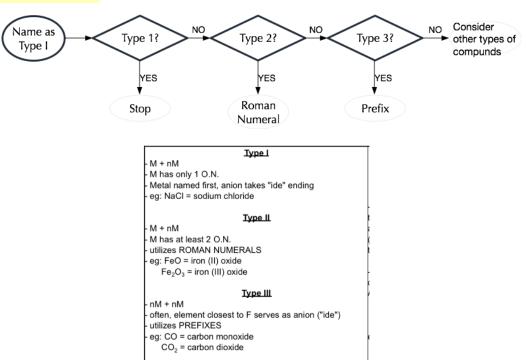
- Once it is determined that the compound being named is indeed a Binary Non-acid, identify the
- "type" of compound, from among three choices.
- There are three types of binary compounds, each of which has its own nomenclature rule.


Three RULES of binary non-acids Type I M + nM M has only 1 O.N. Metal named first, anion takes "ide" ending eg: NaCI = sodium chloride Type II M + nMM has at least 2 O.N. utilizes ROMAN NUMERALS eg: FeO = iron (II) oxide Fe_2O_3 = iron (III) oxide Type III nM + nM often, element closest to F serves as anion ("ide") utilizes PREFIXES eg: CO = carbon monoxide CO_2 = carbon dioxide

Three TYPES of binary non-acids

 \rightarrow Type III — two non-metals


 \rightarrow Type I — type I metal + non-metal


 \downarrow Type II — type II metal + non-metal

Strategy

Start by naming the compound as a Type I, and then work from there.

	<u> </u>
Type I Compounds	(Type I metal + non-metal)
Type i compoundo	(Type Theta Theta)

Name-to-formula

(EX) ¿Provide the correct name for the following compounds?

NaCl 🐝	Name as Type 1? YES Stop Roman Numeral NO Type 2? Type 3? Type 3?
MgCl ₂ ~~	Type I - M + nM - M has only 1 O.N. - Metal named first, anion takes "ide" ending - eg: NaCI = sodium chloride
MgO 🐝	Type II - M + nM - M has at least 2 O.N. - utilizes ROMAN NUMERALS - eg: FeO = iron (II) oxide Fe ₂ O ₃ = iron (III) oxide
AgBr 🐝	Type III - nM + nM - often, element closest to F serves as anion ("ide") - utilizes PREFIXES - eg: CO = carbon monoxide CO ₂ = carbon dioxide

Formula-to-name

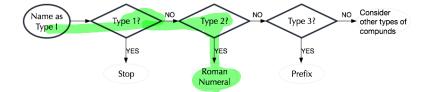
- ightarrow write the element symbol for the cation and the anion
- ightarrow note the charge on each ion
- ightarrow use subscripts to make the resulting formula charge-neutral

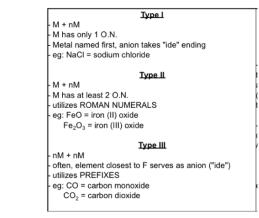
(EX) ¿Provide the correct formula for the following compounds? sodium chloride $V_{Na}^{+}CL^{-}$ magnesium chloride $M_{Sa}^{2+}CL^{-}$

magnesium oxide

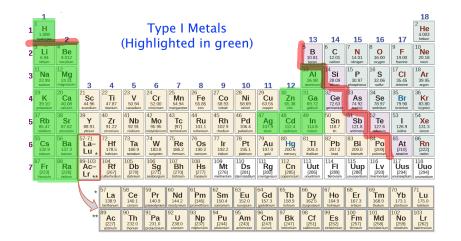
silver bromide

CAVEAT!


After you write down the elements which comprise the formula, be sure to make the formula is charge-neutral (by adding subscripts, if necessary) before naming.

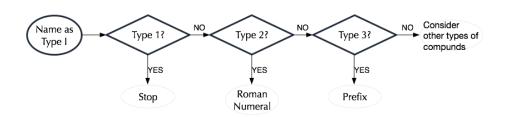

M.

Type II Compounds (type II metal + non-metal)


CuCl 🐝

CuCl₂ --->

Memorize the position of all Type II metals on the periodic chart



The metals highlighted in green are Type I. Memorize their position on the periodic chart.
Rule of Thumb for identifying metal type: if a metal is not a Type II metal, then it is assumed to be a Type I metal.


DISCLAIMER: in fact, some of the non-highlighted metals are, indeed, Type I; however, you need not memorize those anomalies. You will either not be asked to name compounds containing those anomalies, or you will not be penalized for having applied the Type II nomenclature rule.

1 2	1 H 1.008 hydrogen 3 Li 6.94 lithium	2 4 Be 9.012 beryllium	boron carbon miragen avygen fluorin 13 14 15 16 17									9	18 ² He 4.003 helium 10 Ne 20.18 neon 18 Ar					
3	22.99 sodium	24.31 magnesium	3	4	5	6	7	8	9	10	11	12	26.98 aluminum	28.09 silicon	30.97 phosphorus	32.06 sulfur	35.45 chlorine	39.95 argon
4	19 K 39.10 potassium	20 Ca 40.08 calcium	21 Sc 44.96 scandium	22 Ti 47.87 titanium	23 V 50.94 vanadium	24 Cr 52.00 chromium	25 Mn 54.94 manganese	26 Fe 55.85 iron	27 Co 58.93 cobalt	28 Ni 58.69 nickel	29 Cu 63.55 copper	30 Zn 65.38 zinc	31 Ga 69.72 gallium	32 Ge 72.63 germanium	33 As 74.92 arsenic	34 Se 78.97 selenium	35 Br 79.90 bromine	36 Kr 83.80 krypton
5	37 Rb 85.47 rubidium	38 Sr 87.62 strontium	39 Y 88.91 yttrium	40 Zr 91.22 zirconium	41 Nb 92.91 niobium	42 Mo 95.95 molybdenum	43 Tc [97] technetium	44 Ru 101.1 ruthenium	45 Rh 102.9 rhodium	46 Pd 106.4 palladium	47 Ag 107.9 silver	48 Cd 112.4 cadmium	49 In 114.8 indium	50 Sn 118.7 tin	51 Sb 121.8 antimony	52 Te 127.6 tellurium	53 126.9 iodine	54 Xe 131.3 xenon
6	55 Cs 132.9 cesium	56 Ba 137.3 _{barium}	⁵⁷⁻⁷¹ La– Lu *	72 Hf 178.5 hafnium	73 Ta 180.9 tantalum	74 W 183.8 tungsten	75 Re 186.2 rhenium	76 OS 190.2 osmium	77 Ir 192.2 iridium	78 Pt 195.1 platinum	79 Au 197.0 gold	80 Hg 200.6 mercury	81 TI 204.4 thallium	82 Pb 207.2 lead	83 Bi 209.0 bismuth	84 Po [209] polonium	85 At [210] astatine	86 Rn [222] radon
7	87 Fr [223] francium	88 Ra [226] radium	⁸⁹⁻¹⁰³ Ac- Lr _{**}	104 Rf [267] rutherfordium	105 Db [270] dubnium	106 Sg [271] seaborgium	107 Bh [270] bohrium	108 Hs [277] hassium	109 Mt [276] meitnerium	110 Ds [281] darmstadtium	111 Rg [282] roentgenium	112 Cn [285] copernicium	113 Uut [285] ununtrium	114 Fl [289] flerovium	115 Uup [288] ununpentium	116 LV [293] livermorium	117 Uus [294] ununseptium	118 Uuo [294] ununoctium
			\bigvee	57 La 138.9 lanthanum 89 Ac [227] actinium	58 Ce 140.1 cerium 90 Th 232.0 thorium	59 Pr 140.9 prasecdymium 91 Pa 231.0 protactinium	Nd 144.2 neodymium	61 Pm [145] promethium 93 Np [237] neptunium	62 Sm 150.4 samarium 94 Pu [244] plutonium	63 Eu 152.0 europium 95 Am [243] americium	64 Gd 157.3 gadolinium 96 Cm [247] curium	65 Tb 158.9 terbium 97 Bk [247] berkelium	66 Dy 162.5 dysprosium 98 Cf [251] californium	67 Ho 164.9 holmium 99 Es [252] einsteinium	68 Er 167.3 erbium 100 Fm [257] fermium	69 Tm 168.9 thulium 101 Md [258] mendelevium	70 Yb 173.1 ytterbium 102 No [259] nobelium	71 Lu 175.0 lutetium 103 Lr [262] lawrencium

Type II nomenclature rule: name as a Type I, then add Roman Numeral

A Roman Numeral is used to denote the charge on the metal cation

M + nM

- M + nM - M has only 1 O.N. - Metal named first, anion takes "ide" ending - eg: NaCI = sodium chloride

Type II

Type I

- M + nM - M has at least 2 O.N. - utilizes ROMAN NUMERALS - eg: FeO = iron (II) oxide Fe₂O₃ = iron (III) oxide

nM + nM

Type III

nm + nm
 often, element closest to F serves as anion ("ide")
 utilizes PREFIXES
 eg: CO = carbon monoxide
 CO₂ = carbon dioxide

(EX) ¿Provide the correct name for the following compounds?

Fe₂O₃

Common Type II Metals

Older Name

ferric

ferrous

cupric

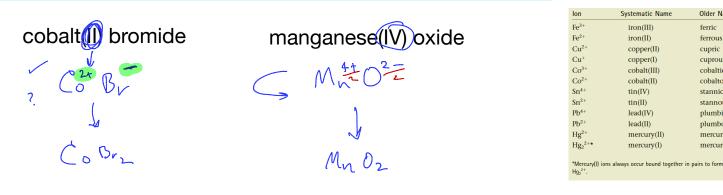
cuprous

cobaltic

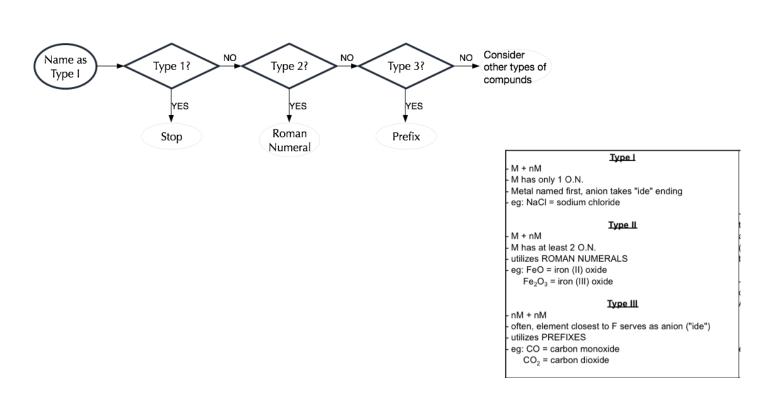
cobaltous

stannic

stannous


plumbic

plumbous

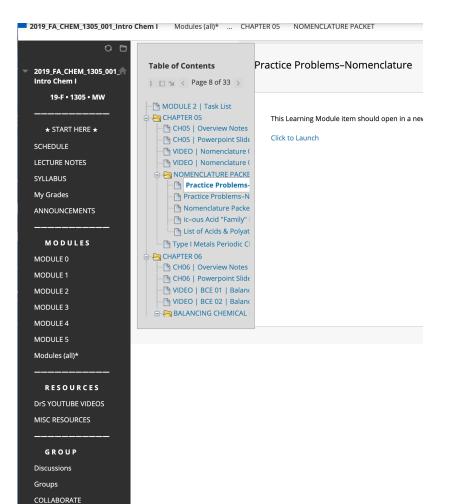

mercuric

mercurous

(EX) ¿Provide the correct formula for the following compounds?

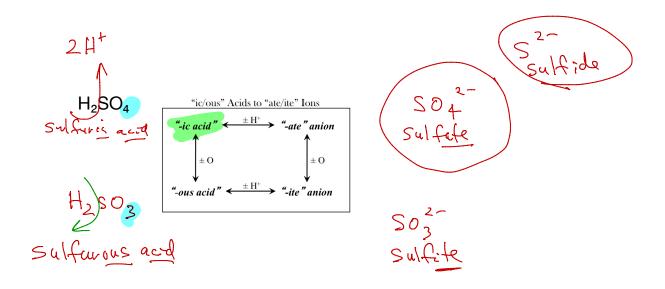
Type III nomenclature rule: name as a Type I, then add prefix(es)

Type III Compounds (non-	-metal + non-metal)
--------------------------	---------------------

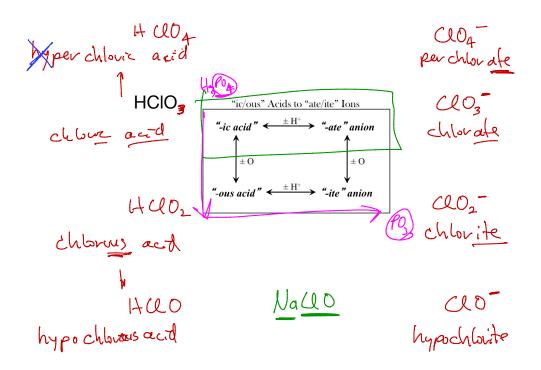

(EX) ¿Provide the correct name for the following compounds?

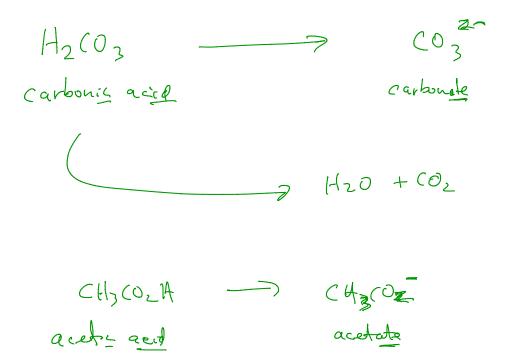
NO	
N ₂ O	
СО	
CO ₂	
(EX) ¿Provide the correct formula	for the following compounds?
boron trifluoride	BF ₃
dinitrogen pentoxide	N205
carbon monoxide	

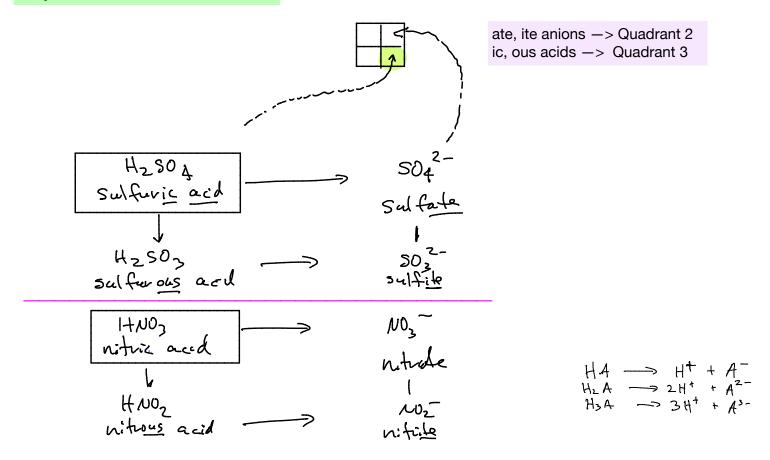
Common Type III Prefixes


Prefix	Number Indicated
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8

Naming Polyatomic Acids (Quadrant 3)


Derivatives of 'ic' Acids: 'ous' Acids, 'ate' Anions, 'ite' Anions




element -> ide
ic -> ate
ous -> ite

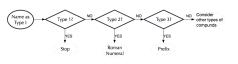
The "Extended Family"

Three common extended families, the halogen-centered polyatomic acids: \cdot HClO₃ \cdot HBrO₃ \cdot HIO₃

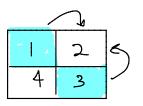
Naming Polyatomic Non-acids (Quadrant 2)

Guidance

→ often: Q1 metal cation + Q3 polyatomic anion = Quadrant 2 name

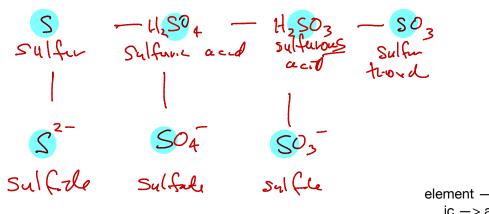

 \downarrow treat polyatomic ions as a single unit; e.g, treat PO₄? as one unit with a -3 charge

 \hookrightarrow essentially, apply the Type I and Type II rules to polyatomic species


→ whereas Type I and Type II rules applied to binary non-acids (Q1) often end in "ide", the same rules applied to POLYATOMIC non-acids (Q2) often end in "ate" or "ite"

Fe₂(PO₃)

PDJ $Ca_3(PO_4)_2$



Polyatomic Acids And Ions

Common Polyatomic Ions							
Name	Formula	Related Acid	Formula				
ammonium	NH4 ⁺						
hydronium	H_3O^+						
oxide	O ²⁻						
peroxide	O ₂ ²⁻						
hydroxide	OH						
acetate	CH ₃ COO ⁻	acetic acid	CH₃COOH				
cyanide	CN⁻	hydrocyanic acid	HCN				
azide	N3 ⁻	hydrazoic acid	HN ₃				
carbonate	CO3 2-	carbonic acid	H ₂ CO ₃				
bicarbonate	HCO3 ⁻						
nitrate	NO ₃ ⁻	nitric acid	HNO ₃				
nitrite	NO_2^-	nitrous acid	HNO ₂				
sulfate	SO4 ²⁻	sulfiric acid	H ₂ SO ₄				
hydrogen sulfate	HSO ₄ -						
sulfite	SO3 ²⁻	sulfurous acid	H ₂ SO ₃				
hydrogen sulfite	HSO ₃ ⁻						
phosphate	PO ₄ ³⁻	phosphoric acid	H ₃ PO ₄				
hydrogen phosphate	HPO ₄ ^{2–}						
dihydrogen phosphate	H ₂ PO ₄ ⁻						
perchlorate	ClO ₄ ⁻	perchloric acid	HCIO ₄				

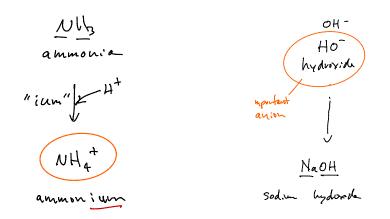
element -> ide ic -> ate ous -> ite

The 7 memory "ic acids" highlighted in blue Atoms, Molecules, And Their Ions — Don't get them confused

element -> ide ic -> ate ous -> ite

Binary Acids (Quadrant 4 Names)

Name of Gas	Name of Acid					
HF(g), hydrogen fluoride	HF(aq), hydrofluoric acid					
HCI(g), hydrogen chloride	HCI(aq), hydrochloric acid					
HBr(g), hydrogen bromide	HBr(aq), hydrobromic acid					
HI(g), hydrogen iodide	HI(aq), hydroiodic acid					
H ₂ S(g), hydrogen sulfide	H ₂ S(aq), hydrosulfuric acid					


HCQ - Hax

Acids vs. Pure Substance counterparts

this	is a(n)	so it uses this
HCI (aq)	acid/water	binary acid (Q4) name
HCI (s)	pure	binary non-acid (Q1) name
HCI (L)	pure	binary non-acid (Q1) name
HCI (၅)	pure	binary non-acid (Q1) name

Polyatomic Ions Not Derived From Polyatomic Acids

-PRACTICE PROBLEMS: ANSWERS NEXT PAGE-

(EX) Nomemclature:	Name → Formula				
chromium(III) phosphide		Start	Type 1? NO	Type 2? N	Type 37 NO Look elsewhere
magnesium(II) phosphate			STOP	STOP	STOP
calcium chloride					
ammonium sulfate					
calcium oxide					
nitric acid					
nitrate ion					
phosphite ion					

(EX) Nomemclature:

Name → Formula

chromium(III) phosphide

de

P03 -

ous

magnesium(II) phosphate

$$\begin{array}{ccc} & \downarrow & \downarrow & & \\ & M_{n} & \downarrow & \swarrow & \begin{pmatrix} \psi_{1} & \downarrow \\ & M_{n} & \downarrow \end{pmatrix}_{2} \Rightarrow & M_{n_{3}}(\mathcal{A}_{4})_{2} \\ \text{calcium chloride} & & C_{a}^{2+} & Q_{2}^{-} & \longrightarrow C_{a}(\mathcal{L}_{2} \\ \text{ammonium sulfate} & & \mathcal{NH}_{4}^{+} & SO_{4}^{3-} & \longrightarrow (\mathcal{NH}_{4})_{3} & SO_{4} \\ \text{calcium oxide} & & C_{a}^{2+} & O_{-}^{2-} & \longrightarrow C_{a}O \\ \text{nitric acid} & & H_{ND_{3}} & (memory) \\ \text{nitrate ion} & & H_{ND_{3}} & \longrightarrow \mathcal{ND}_{3} \end{array}$$

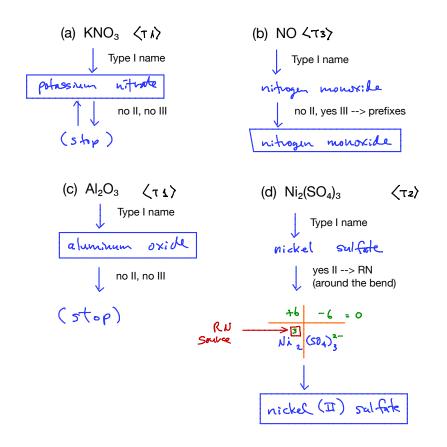
ic

H 3 P03 ic

nitrate ion

phosphite ion

-PRACTICE PROBLEMS: ANSWERS NEXT PAGE-


(EX) Nomenclature:	Formula → Name
(a) KNO ₃	(b) NO

(c) AI_2O_3

(d) Ni₂(SO₄)₃

(EX) Nomenclature: Formula -> Name

