

CHAPTER 6 INTRO TO CHEMICAL REACTIONS

HOW TO BALANCE CHEMICAL EQUATIONS THE TWIN ELEMENTS METHOD	END Have
1. ID "lone" elements (pure elements that are all "alone")	$\int \int$
2. ID "twin" elements "furthed" (element whose symbol appears once-and-only-once on each side of the equation. One of the twins lives on the reactant-side, the other on the product-side)	$1 CH_4 + 2 O_2 \rightarrow 2 H_2 O + 1 CO_2$
3a. START with the Twin Element with the largest subscript.3b. END by determining the coefficient of a Lone	START typen
 Element, if present. 4. Exploit opportunities to employ two tricks of the trade: (i) cross-multiplication 	$2 \underline{M} = 2 + 2$
(ii) fractionations	2 2 = 4

FIRST-ORDER BCE FLOW DIAGRAM

TRIPLETS AND HIGHER (simple algebraic equation)

(Practice Question) Balance the following equation to proper form: \rightarrow (NaBH₄ + 4) BF₃ \rightarrow \rightarrow \rightarrow (NaBF₄ + 2) B₂H₆ $3 \text{ NaBH}_4 + 4 \text{ BF}_3 \longrightarrow 3 \text{ NaBF}_4 + 2 \text{ B}_2 \text{H}_6$ Non. Soft 30 (Answer)