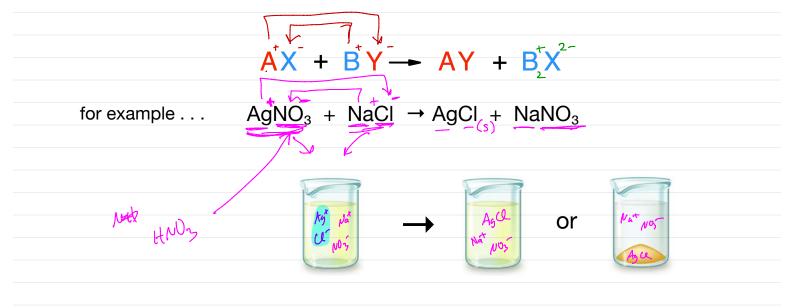
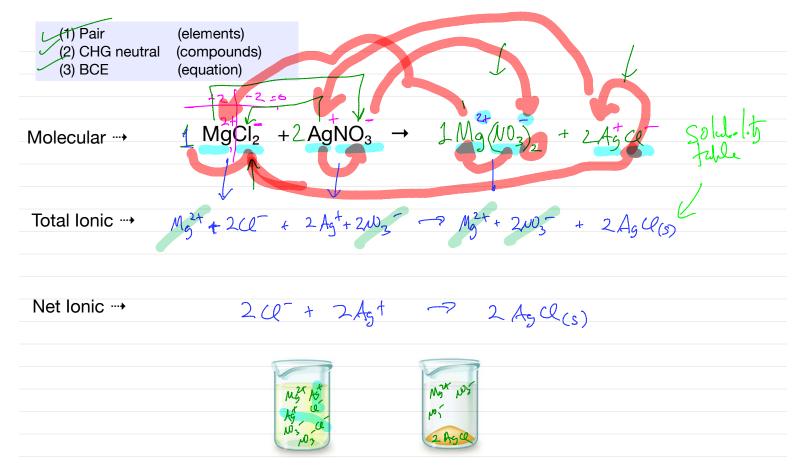


CHAPTER 7 7 TYPES OF CHEMICAL REACTIONS

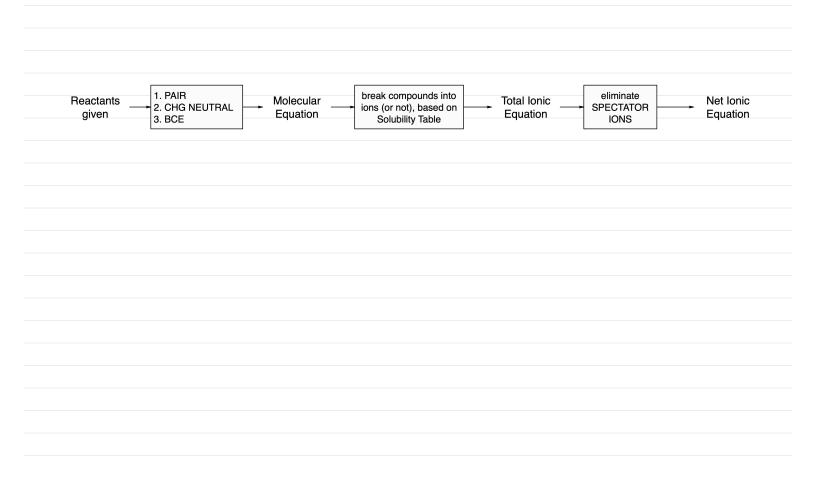
IONIC reactions occur between ionic compounds


- recall, ionic compound is usually a Metal + Nonmetal
- → or another way of putting it: a Type I or Type II compound

REDOX reactions are reactions between covalent compounds


└→ reactions between Type III compounds

[1] Double Displacement


- Also known as a METATHESIS reaction
- Common vernacular is the PARTNER SWAP reaction
- · Essentially, cations exchange their associated anions with each other
- Falls under the class of IONIC reactions
 - ightarrow Ionic Compound = a Metal + a Nometal
 - → Ionic Compound = Type I or Type II compound

Predicting ionic reaction products AX + BY \rightarrow ?? + ??	(1) Pair (2) CHG neutral (3) BCE	(elements) (compounds) (equation)
Given 2 Ionic Reactants: Procedure for Predicting Cor	rect Molecular Equation	
(1) Pair (elements)(2) CHG neutral (compounds on Product-side)		
(3) BCE (entire chemical equation)		

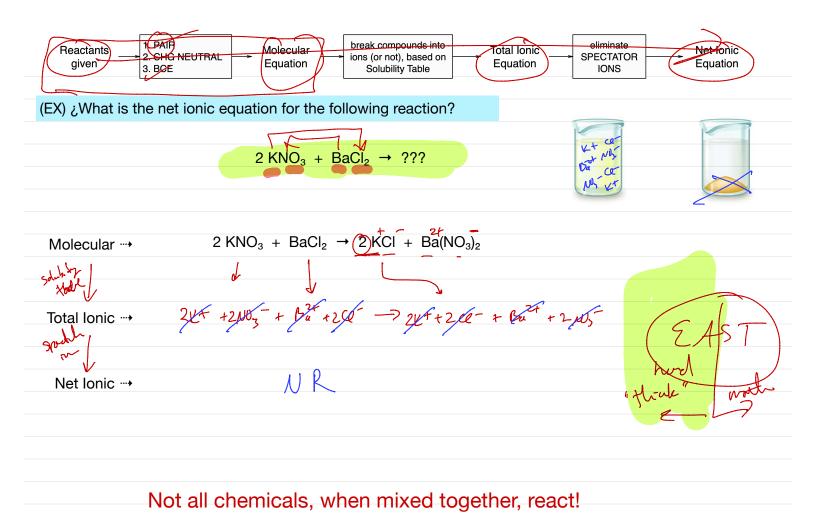
Spectator Ion — ion which does NOT participate in the chemical reaction; i.e., it is the same on both the Reactant and Product sides of the equation.

Solubility Tables

Solubilities of Common Ionic Compounds in Water

Soluble compounds contain • group 1 metal cations (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , and Cs ⁺) and ammonium ion (NH ₄ ⁺) • the halide ions (Cl ⁻ , Br ⁻ , and l ⁻) • the acetate (C ₂ H ₃ O ₂ ⁻), bicarbonate (HCO ₃ ⁻), nitrate (NO ₃ ⁻), and chlorate (ClO ₃ ⁻) ions • the sulfate (SO ₄ ⁻) ion	 Exceptions to these solubility rules include halides of Ag⁺, Hg₂²⁺, and Pb²⁺ sulfates of Ag⁺, Ba²⁺, Ca²⁺, Hg₂²⁺, Pb²⁺, and Sr²⁺
Insoluble compounds contain • carbonate (CO ₃ ²⁻), chromate (CrO ₄ ²⁻), phosphate (PO ₄ ³⁻), and sulfide (S ²⁻) ions • hydroxide ion (OH ⁻)	 Exceptions to these insolubility rules include compounds of these anions with group 1 metal cations and ammonium ion hydroxides of group 1 metal cations and Ba²⁺

Table 4.1


		mula	Juble LE	oune Exceptions
101	lonfi	ું હું	JUDI US	our Except
sodium ion	Na⁺	~		
potassium ion	K⁺	<		
ammonium	NH_4^+	~		
nitrate	NO ₃ ⁻	<		
acetate	AcO ⁻	<		
halogen ion	Cl ⁻ , Br ⁻ , l ⁻	~		salts with Ag*, Hg ₂ ²⁺ , Pb ²⁺
sulfate	SO42-	✓		salts with Ba ²⁺ ,Ca ²⁺ , Pb ²⁺ , Hg ²⁺
sulfide	S ²⁻		✓	salts with Na ⁺ , K ⁺ , NH ₄ ⁺ , Mg ₂ ⁺ ,Ca ₂ ⁺
carbonate	CO32-		✓	salts with… Na⁺, K⁺, NH₄⁺
phosphate	PO4 3-		✓	salts with… Na⁺, K⁺, NH₄⁺
arsenate	AsO4 ³⁻		✓	salts with… Na⁺, K⁺, NH₄⁺
oxide	0 ²⁻		✓	salts with Group 1 & 2 metals
hydroxide	HO.		√	strong bases

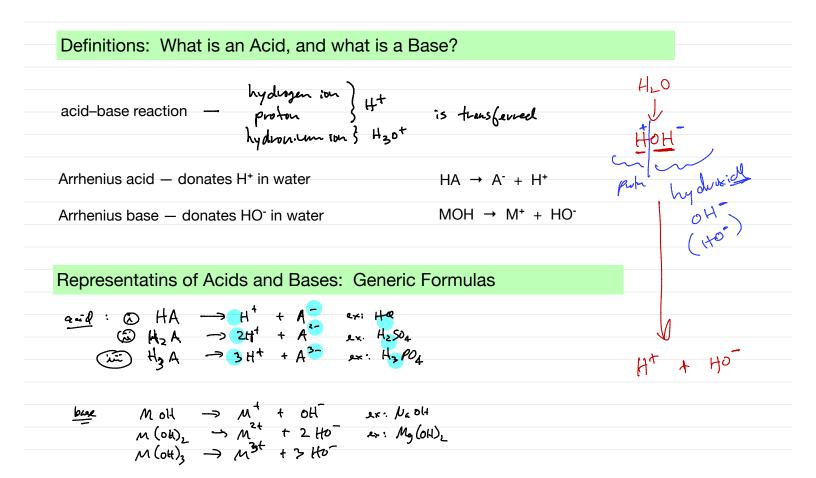
Memorize "5 Always-soluble" ions?

	AIR HG NEUTRAL CE	Molecular Equation	break compounds into ions (or not), based on Solubility Table	Total lonic Equation	eliminate SPECTATOR IONS	Net Ionic Equation
			ckly work a problem the following reactio			
	2 Fe(NC) ₃₎₃ +3Na ₂ S -	+ $7?? 1Fe_2S_3^{4}$	$+ 6 Na^{+} No_{3}$	/	
Molecular+		2 Fe(NO ₃) ₃ +	$3 \text{ Na}_2 \text{S} \rightarrow \text{Fe}_2 \text{S}_3$	+ 6 NaNO ₃		
Total Ionic	• 2	Fet + 61003	$+ 6N_a^{+} + 35^{2-}$	\rightarrow Fe 25	93 (5) + GN 4	+ 6,103
Net Ionic ···•		2 Fe ³⁴	+ 35 ² -	→ F=2	S ₃ (s)	
			×76 2772	Noven Ste	it - worg	\supset

¿Could you have worked the above problem, had you only been given the Reactants, and not the Molecular Equation . . . that is, had you only been given:

 $Fe(NO_3)_3 + Na_2S \rightarrow ???$ Jol, Jol,

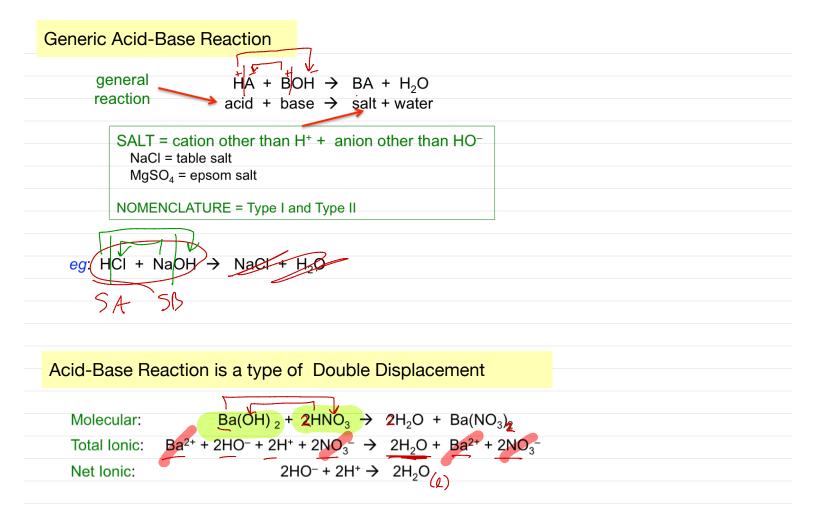
[2] Precipitation Reactions


· As illustrated above

• Often, these are the result of ionic reactions; however, any type of reaction which give a precipitate is a precipitation reaction.

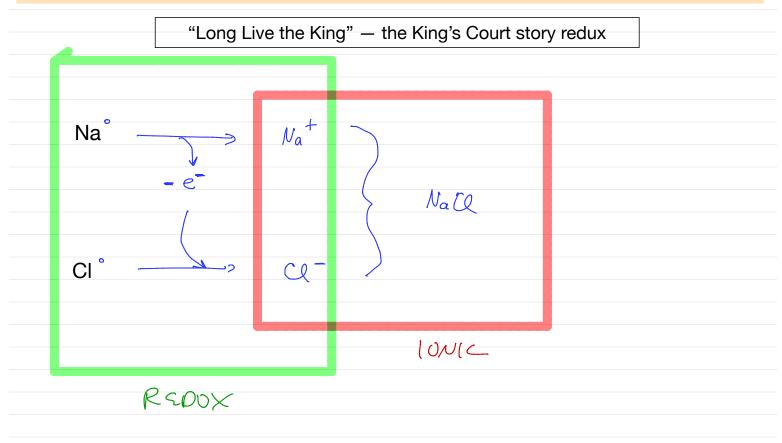
• To solve these problems, on either needs a soluility table, or to know the solubility rules for the reaction materials.

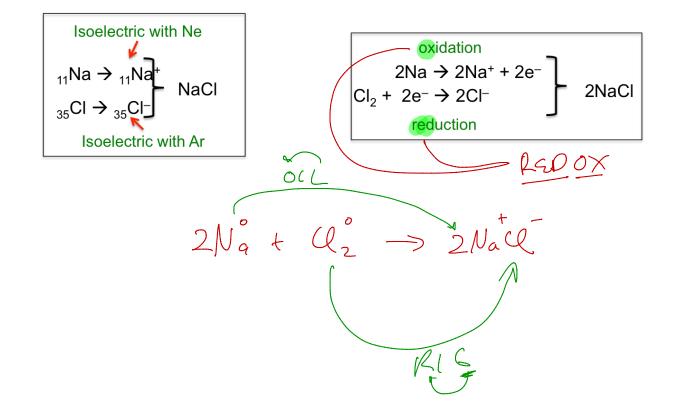
		mula	. 0	ale ions
10r	Ionfo	ુ. આ	Juble LE	oune exceptions
1 sodium ion	Na⁺	~		
2 potassium ion	K⁺	✓		
3 ammonium	NH4 ⁺	~		
4 nitrate	NO ₃ ⁻	✓		
5 acetate	AcO ⁻	✓		
6 halogen ion	Cl [°] , Br [°] , l [°]	~		salts with Ag*, Hg ₂ ²⁺ , Pb ²⁺
7 sulfate	SO42-	✓		salts with Ba ²⁺ ,Ca ²⁺ , Pb ²⁺ , Hg ²⁺
8 sulfide	S ²⁻		~	salts with Na ⁺ , K ⁺ , NH ₄ ⁺ , Mg ₂ ⁺ ,Ca ₂ ⁺
9 carbonate	CO32-		1	salts with Na*, K*, NH₄*
10 phosphate	PO4 ³⁻		✓	salts with Na ⁺ , K ⁺ , NH ₄ ⁺
11 arsenate	AsO4 ³⁻		~	salts with… Na⁺, K⁺, NH₄⁺
12 oxide	0 ²⁻		~	salts with Group 1 & 2 metals
13 hydroxide	HO.		√	strong bases


[3] Acid-Base Reactions

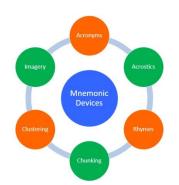
Strong vs. Weak Acids

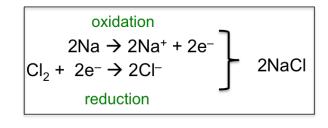
- strong dissociates 100%
 weak " < 100%
- Strong 8 STRONG BASES 7 STRONG ACIDS HA \rightarrow H+ + A-Hydroxides of ... $1 HNO_3$ I: 100 0 0 1 Li (2) H₂SO₄ 2 Na 3 HCIO₄ E: 100 100 0 3 K (4) HClO₃ ④ Rb 5 HCI Weak 5 Cs 6 HI HA \rightarrow H+ + A-6 Ва ⑦ HBr I: 100 0 0 7 Sr 8 Ca 5 E: 95 5


[NOTE: For the most part, we will limit equations of acid-base reactions to those involving Strong Acids... acid-base reactions involving Weak Acids are much more difficult to work with, and beyond the scope of this class.]



Practice Problem: Predict the products, and write balanced (i) molecular, (ii) total ionic, and (iii) net ionic equations.


OP O CV Ca + 240 + 24+ + 200 - -> Cu + +2Bv. + 2H2O(R) 245+2H+ -> 2H20


[4] REDOX Reactions

Best Mnemonic Device Ever . . . ¿How to tell which half reaction is Oxidation, and which is Reduction

Agency	
"AGENTS" (facilitates an action)	OIL
 Oxidizing agent (OXIDANT) = species that causes something else to become oxidized it is, itself, reduced. 	RIG
 Reducing agent (REDUCTANT) = species that causes something else to become reduced it is, itself, oxidized. 	
	,
	LT.
$2Na^{2} \rightarrow 2Na^{+} + 2e^{-}$	001
$Cl_2^{\circ} + 2e^- \rightarrow 2Cl_1^{-}$ 2NaCl	Nou
reduction	VCo
te	
_	

Rules for Assigning Oxidation Numbers ("Charge")

A formalization of what you already know

- 1. The oxidation number of an atom in an elemental substance is zero.
 - 2. Oxidation numbers for common NONmetals are usually assigned as follows:
 - Hydrogen: +1 when combined with nonmetals, -1 when combined with metals
 - Oxygen: -2 in most compounds
 - Halogens: -1 in most compounds
- 3. GROUP 1 = +1
- 4. GROUP 2 = +2
- 5. GROUP 3 = usually + 3
- 6. Transition metals Type I / Type II rules as guidance

 $H^{+} \rightarrow H^{-}$

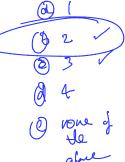
4 Types of REDOX questions

(EX) CLASSIFY REACTION

¿For the following reactionS, answer the following:

(1) Is this reaction a redox?

(2) What is oxidized? (or, What is reduced?)


- (3) What is oxidizing agent? (or, What is reducing agent?)
- (4) How many electrons are transferred

$$^{\prime} Zn + 2 HCI \rightarrow ZnCI_2 + H_21$$

$$1 Z_{n}^{o} + 2 HCP \rightarrow Z_{n}^{2+}CP_{2}^{2+} + H_{2}^{o}t$$

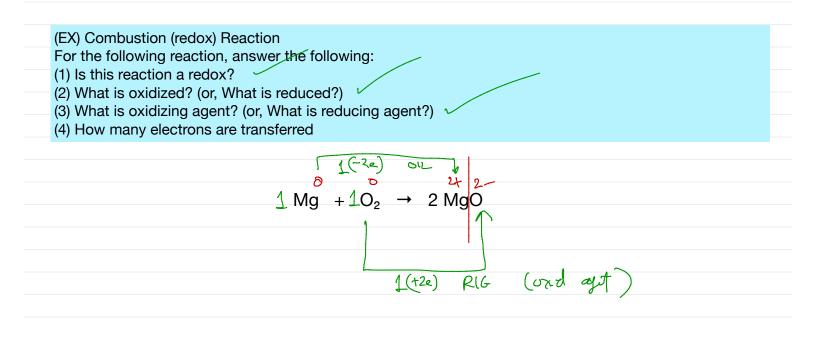
$$2(+1e) RIG(0x aget) (1)$$



(EX) CLASSIFY REACTION

¿For the following reactionS, answer the following:

(1) Is this reaction a redox?


- (2) What is oxidized? (or, What is reduced?)
- (3) What is oxidizing agent? (or, What is reducing agent?)
- (4) How many electrons are transferred

[5] Combustion Reactions

A special class of REDOX reaction

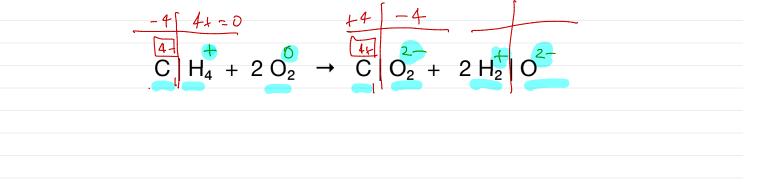
• For purposes of this class, a COMBUSTION reaction is one in which a compound reacts with elemental OXYGEN to produce an "OXIDE"

(EX) Hydrocarbon Combustion Reaction

- For the following reaction, answer the following:
- (1) Is this reaction a redox?
- (2) What is oxidized? (or, What is reduced?)
- (3) What is oxidizing agent? (or, What is reducing agent?)
- (4) How many electrons are transferred

(H4 1(-8e) OIL $H_4^+ + 2O_2^{P} \rightarrow CO_2^{+} + 2H_2O$ RIG 4(+2e) T 2 3 1 2 -3

¿How do I determine the oxidation number (ON) of the carbon's?


To determine the ON for each element in a compound . . .

treat each compound as if it has two pieces: a positive (cation) piece, and a negative (anion) piece.
you must know the charge of one of the two "pieces" to calculate the other. You can usually figure

one of them out by either looking at a periodic chart, or knowing the rules in the Oxidation Number list. • once you know the charge on one of the two pieces, back-calculate the other until the compound

of interest is Charge Neutral.

(essentially, you calculate in a manner analogous to the way you determine the Roman Numeral when naming a Type II compound)

Procedure summary: Identify the charge on one part of the compound, then "back-calculate" the other part.

[6] Synthesis Reactions	
	\mathcal{I}
More → Fewer	aka Combinative Rxh.
$A + B \rightarrow C$	
$2 H_2 + O_2 \rightarrow 2 H_2O$	
$2 \text{ Sb} + 3 \text{ Cl}_2 \rightarrow 2 \text{ Sb}\text{Cl}_2$	
[7] Decomposition Reactions	
Fewer → More	
$A \rightarrow B + C$	
$2 H_2 O \rightarrow 2 H_2 + O_2$	

(EX) Classification of Reactions ¿Classify the following reactions ... redox; combustive $4 \text{ HN}_4 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$ $2 \text{ Al} + 3 \text{ Cl}_2 \rightarrow 2 \text{ AlCl}_3$ syn; redox $BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 + 2 NaCl$ dbl displ; ppt

My Cheatsheet

TWO GENERAL CLASSES OF	F CHEMICAL REACTIONS
V	
IONIC	"REDOX"
	+
Double Displacement (DD)	REDOX
Precipitation (PPT)	Combusion
Acid-Base	Synthesis (aka Combination)
	Decomposition
1. Pair	
2. Charge Neutral 3. Balance Chem Eq.	
Molecular Equation	
¥	
Total Ionic Equation	
Net Ionic Equation	
• 7 Strong Acids • 8 Strong Bases	
8 Strong Bases	
Solubility Table 5 Always Soluble Ions	
• 5 Always Soluble Ions	