CHAPTER 8

CHEMICAL COMPOSITION (STOICHIOMETRY I)

CHAPTER 9 CHEMICAL QUANITIES (STOICHIOMETRY II)
CHAPTER 15 - part (MOLARITY)

¿So, at the end of the day, am I going to pass this course?

COURSE GRADE vs. EXAM(1-2) AVERAGE		
FINAL		
COURSE	Exams1-2	Exams1-2.
GRADE	AVERAGE:	AVERAGE: Range
(Past	Range Max	Min
Courses)		
A	105	86
B	100	63
C	86	58
D	83	50
F	74	0
n $=$	319	319

GROUP PROJECT

TOPIC	CH8	CH9
1. stoichiometry calc	$205-224$	$249-263$
2. limiting reagents	-	$264-272$
3. \% yield	$225-226$	-
4. \% composition	$227-$ end	-
5. det'n formulas	-	$273-\mathrm{end}$

Stoichiometry = measuring in the correct proportions

"Houston, we have a problem."

To perform experiments, we need to be able to COUNT molecules, and to SCALE the amouints up enough so we can see (measure) them. . . but we can't see molecules, much less count them out.

Scale-up Factor: Avogadro's Number (6.02E23)

$$
\begin{aligned}
\text { scale up factor } & =\frac{6.02 E 23 \text { items }}{\text { mole }} \\
& =\frac{6.02 \times 10^{23} \text { items }}{\text { mole }}
\end{aligned}
$$

Count-by-Weight Factor: Molar Mass
\rightarrow mass of 1 mole of a substance \hookrightarrow mass of 6.02 E 23 parts of a substance

Just how large is a 'mole' of something

1 mole of stacked pennies $=$ to moon and back... 100 million times
1 mole of seconds $=1$ million ages of the supposed age of the universe 1 mole of human cells $=6$ billion people

1 mole of sand $=$ cover entire USA...2.4 inches deep

$$
\begin{aligned}
& \text { ? age }=\frac{6.02 E 23 \mathrm{~s}}{} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \cdot \frac{1 \text { day }}{24 \mathrm{hr}} \cdot \frac{1 \mathrm{yr}}{365 \text { day }} \cdot \frac{1 \text { age }}{2 E 16 \mathrm{yr}}=954,465 \text { ages } \\
& \text { ? humans }=\frac{6.02 E 23 \text { cells }}{\bullet} \frac{1 \text { body }}{100 E 12 \text { cells }}=6 E 9 \text { humans } \\
& \text { [100trillion] [6billion] } \\
& ? \text { in }=\frac{6.02 \mathrm{E} 23 \text { grains }}{} \cdot \frac{10^{-12} \mathrm{~m}^{3}}{1 \text { grain }} \cdot \frac{1 \text { USA }}{10^{13} \mathrm{~m}^{2}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=2.37 \mathrm{in}
\end{aligned}
$$

FACTOIDS

(1) "Mole" derives from word meaning "mass," but it refers to the number of "particles" or "bits" or "pieces" or "entities" of mass
(2) Mole is one of 7 fundamental SI units
(3) Definition: amount of material "discrete entities" as the number in exactly 12 g of Carbon of Carbon-12
(4) $\mathrm{N}_{\mathrm{A}}=\mathrm{AN}=$ Avagadro's Number $=6.022 \times 10^{23}$
$\frac{6.022 \times 10^{23} \text { entities }}{1 \mathrm{~mol}}$ or $\frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { entities }}$
(5) Mole is just a number with a name, just like the number 12

$$
\frac{6.022 \times 10^{23} \text { entities }}{1 \mathrm{~mol}} \text { vs } \frac{12 \text { entities }}{1 \text { dozen }}
$$

One amu ~ mass (proton or neutron) DEF = exactly 1/12-th of the mass of one carbon-12 atom ($1 \mathrm{amu}=1.6604 \mathrm{e}-24 \mathrm{~g}$) $(\mathrm{p} 76 / 84)$

A mole is defined as the amount of substance containing the same number of discrete entities (such as atoms, molecules, and ions) as the number of atoms in a sample of pure 12 C weighing exactly 12 g .

\uparrow ASIDE \uparrow

"g-mole-particles" Calculations

Stoichiometric Calculations: The most important "core concept" of this course!

$$
\frac{\square}{1}=\frac{\star}{}
$$

\qquad . $=$ keep going until unit on right is same as the unit on the left
let the MAP guide you along the Dimensional Analysis path

Flight Path Analogy

- start @ $5.00 \mathrm{~g}, \mathrm{Cu}$
- depart g,Cu $->$ arrive mol,Cu
- depart mol,Cu —> arrive \# particles, Cu (your destinaton)

What the future holds . . .

Lecture

Target

"mole-to-mole" Calculations (stoichiometry across an equation)

(EX) Mole \rightarrow Mole Calculation
Calculate the number of moles of oxygen required to react exactly with 4.30 moles of propane, C 3 H 8 , in the reaction described by the following balanced equation:

$$
\frac{\square \operatorname{mol}_{O_{2}}}{1}=\frac{4.30 \mathrm{~mol}_{C_{3} H_{8}}}{1} \times \frac{5 \mathrm{~mol}_{O_{2}}}{1 \mathrm{~mol}_{C_{3} H_{8}}}=\frac{21.5 \mathrm{~mol}_{O_{2}}}{1}
$$

(EX) $\mathrm{g}, \mathrm{A} \rightarrow \mathrm{g}, \mathrm{B}$
¿Calc amount, in grams, of water produced from $128 \mathrm{~g} \mathrm{O}_{2}$?

$$
\begin{aligned}
& \square g, \mathrm{H}_{2} \mathrm{O}=\frac{128 \mathrm{~g}, \mathrm{o}_{2}}{\square} \cdot \frac{1 \mathrm{~mol}, \mathrm{o}_{2}}{32 \mathrm{~g}, \mathrm{o}_{2}} \cdot \frac{2 \mathrm{~mol}, \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol}, \mathrm{o}_{2}} \cdot \frac{18 \mathrm{~g}, \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol}, \mathrm{H}_{2} \mathrm{O}}=144 \mathrm{~g}, \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \mathrm{NaOH}_{2}
\end{aligned}
$$

(EX) $\mathrm{g}, \mathrm{B} \rightarrow \mathrm{g}, \mathrm{A}$
¿Cal grams of hydrogen that will react with $128 \mathrm{~g} \mathrm{O}_{2}$?

$\frac{2(H)=2(1)}{2}$
coble

$$
\mathrm{g}, \mathrm{H}_{2}=\frac{128 \mathrm{~g}, \mathrm{o}_{2}}{} \cdot \frac{1 \mathrm{~mol}, \mathrm{o}_{2}}{32 \mathrm{~g}, \mathrm{o}_{2}} \cdot \frac{2 \mathrm{~mol}, \mathrm{H}_{2}}{1 \mathrm{~mol}, \mathrm{o}_{2}} \cdot \frac{2 \mathrm{~g}, \mathrm{H}_{2}}{1{\mathrm{~mol}, \mathrm{H}_{2}}}=16 \mathrm{~g} \mathrm{H}
$$

¿Calc number of water molecules produced from $128 \mathrm{~g} \mathrm{O}_{2}$?
\square molecules, $\mathrm{H}_{2} \mathrm{O}=\frac{128 \mathrm{~g}, \mathrm{O}_{2}}{\square \mathrm{~mol}, \mathrm{o}_{2}} \cdot \frac{2 \mathrm{~mol}, \mathrm{H}_{2} \mathrm{O}}{32 \mathrm{~g}, \mathrm{o}_{2}} \cdot \frac{6.02 \times 10^{23} \text { molecules }, \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol}, \mathrm{o}_{2}}=4.82 \times 10^{24}$ molecules, $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
6(C) & =6(12) \\
12(H) & =12(1) \\
6(0) & =6(16)
\end{aligned} \quad \begin{aligned}
1\left(\mu_{5}\right)=1(24.3) \\
1(0)=1(16.0)
\end{aligned}
$$

$$
\% \text { yield }=\frac{\text { experimental }}{\text { theoretical }} \cdot 100 \quad \% \text { yield }=\frac{\text { what you got }}{\text { what you should'a got }} \cdot 100
$$

(EX) Talc \% Yield
¿For the MgO reaction above, if you actually recon er 33.7 g of MgO after running the experiments, what is your percent yield?

$$
2 \text { yell }=\frac{33.72}{70.0} \times 100=48.1 \%
$$

$\%$ yield $=\frac{\text { experimental }}{\text { theoretical }} \cdot 100=\frac{33.7 \mathrm{~g}}{70.0 \mathrm{~g}} \cdot 100=48.1 \%$

$\frac{I \text { sand }}{1}=\frac{12 \text { stane } \left\lvert\, \frac{1 \text { said }}{2 x \operatorname{band}}=6\right. \text { sand } . \quad \text { excess }}{6}$
$\frac{\nabla_{\text {sand }}}{1}=\frac{5 x \cos d / 1 \sin }{1 \text { most }}=5$ sand

| $\square \mathrm{brad}$ |
| :--- | :--- |
| 1 |$=$| $5 \operatorname{sand}$ |
| :--- |
| 1 |$\frac{2 \mathrm{bund}}{1 \operatorname{sind}}=10 \mathrm{braed}$ usely

Ant if $4 x \cos s$ (Clot ma^{-})

$$
-\begin{aligned}
& 12 \text { bread } \\
& -10 \text { bid } \\
& \hline 2 \text { bid loft ann }
\end{aligned}
$$

3 Types of Limiting Reagent Problems
(i) determine limiting reagent
(ii) determine excess reagent
(iii) determine amount of excess reagent left over
(EX) Limiting Reagent
¿You have 5.00 g of manganese dioxide and 7.00 g of sulfuric acid.
(a) How much water can you make?

$$
\begin{aligned}
& 5.00_{2}+7.00 \mathrm{~g} \\
& \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MnSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(b) If one of the materials is in excess, how much of it is left over?

(9) himin $=\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) exess $=\mathrm{MnO}_{2}$ (c)
$1\left(M_{n}\right)=1(1)$
$2(0)=2(16)$
$1 M_{n O} \quad 86.942$

$$
\begin{gathered}
=3.10 \mathrm{~g}, \mathrm{MnO}_{2} \text { USED } \\
5.00 \mathrm{~g} \leftarrow \text { ant startel with } \\
-3.10 \mathrm{~g} \leftarrow \text { anit. used } \\
\hline 1.90 \mathrm{~g} \text { LEFT ovan ("9xCEs") }
\end{gathered}
$$

Chemical Composition

Determining Empirical And Molecular Formulas

Chain (MF) is a sum of individual links (EF)

Percent Composition - 3 types of questions
(i) Determining Percent Composition from Formula Mass
(ii) Deriving Empirical Formulas from Percent Composition
(iii) Derivation of Molecular Formulas

Molecular vs. Empirical ("Simplest") Formula

(EX) Molecular Formula from \% Composition
¿A gasoline additive has the \% composition of $71.65 \% \mathrm{Cl}, 24.27 \% \mathrm{C}$, and $4.04 \% \mathrm{H}$, and a molar mass of $98.96 \mathrm{~g} / \mathrm{mL}$. What is the formula?

(EX) Molecular Formula from \% Composition
¿A gasoline additive has the \% composition of $71.65 \% \mathrm{Cl}, 24.27 \% \mathrm{C}$, and $4.04 \% \mathrm{H}$, and a molar mass of $98.96 \mathrm{~g} / \mathrm{mL}$. What is the formula?

(EX) MOLECULAR COMPOSITION
¿What is the molecular formula of a compound with an empirical formula $\mathrm{CH}_{2} \mathrm{O}$ and a molecular weight of $180 \mathrm{~g} / \mathrm{mol}$?

$$
A_{y} B_{y} C_{2}
$$

$$
\begin{aligned}
& 1(C)=1(12)=12 \\
& 2(14)=2(1)=2 \\
& 1(0)=1(16)=\frac{16}{30}
\end{aligned}
$$

$$
\frac{18 \phi}{3 \phi}=\frac{30 n}{30}
$$

(1) Cal ε u. \longrightarrow (2) can ${ }^{n}$ "

$$
6=n
$$

¿ A 24.54 gram sample of copper is heated in the presence of excess fluorine. A metal fluoride is formed with a mass of 31.88 g . Determine the empirical formula of the metal fluoride. [OWL 8.8]

Sample Wt\%-to-Molecular Formula Problem
¿Acelylone is $92.3 \%<, 7.7 \%^{\circ} \mathrm{H}$, and de molar mone $\dot{\circ} 263 / \mathrm{mol}$. wht it the molealar formela?

1. $M \mu=100.2 / \mathrm{mol}$

$$
\begin{gathered}
C_{\frac{5.45}{1.82}} H_{\frac{5.40}{1.82}} \frac{O_{1.82}^{1.82}}{} \\
C_{2.7} H_{2.9} O_{1} \\
\mathrm{C}_{3} H_{3} \mathrm{O}
\end{gathered}
$$

Sample Problem: Turning molecular formula into equation (Make an 'equation' in which the molecule breaks down into individual atoms)
3.81 mils oxen moleals contrib how many seven ot um?

A 'formula' made for sulfur acid would look like this...

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 24+1 \mathrm{~S}+4 \mathrm{O}
$$

