CHEM 1305 - Chapter 07 - Handout

Memorize:

Table 7.1 (solubility rules); types of reaction classifications

Define the following terms; explain the following concepts, and answer the following questions:

- 1) Name four of the "driving forces" that pull reactants toward products
 - a) FORMATION OF A GAS
 - b) FORMATION OF WATER
 - c) FORMATION OF A SOLID
 - d) TRANSFER OF ELECTRONS
- 2) Strong Electrolyte
 - a) define: <u>SUBSTANCE THAT COMPLETELY IN WATER TO PRODUCE</u> <u>SEPARATE IONS (e.g., NaCl --> Na⁺ + Cl⁻).</u>
 - b) **what property does a strong electrolyte impart to water? <u>WATER (OR MORE PROPERLY, THE AQUEOUS SOLUTION OF WATER PLUS</u> <u>THE ELECTROLYTE) BECOMES A GOOD CONDUCTOR OF ELECTRIC</u> <u>CURRENT.</u>
- 3) Arrange the following in order of weakest --> strongest electrolyte: tap water, deionized water, salt water

DEIONIZED WATER < TAP WATER < SALT WATER

- 4) Mark each of the following with an "N" (for NOT soluble, or only very slightly soluble, in water) or "Y" (for soluble in water)
 - a) NaCl <u>Y (a sodium compound, therefore soluble)</u>
 - b) AgCl <u>N</u>
 - c) PbSO₄ <u>N (one of three sulfates that are NOT soluble)</u>
 - d) NaNO₃ <u>Y (nitrates always soluble, are sodium compounds)</u>
 - e) Fe (OH)₃ <u>N (transition metal hydroxyl's not soluble; note: GP 1 & II hydroxyl's are)</u>
 - f) Ba(OH)₂ <u>Y (Group II hydroxyl)</u>
 - g) NH₄NO₃ <u>Y (all common ammonium compounds soluble)</u>
 - h) $NH_4Cl \underline{Y(ditto)}$
 - i) $PbCl_2 N$ (halogen salts with $Hg2^{+2}$, Ag^+ , $Pb2^+$ not soluble)
 - j) CuS N (sulfides are generally insoluble)
- 5) List and describe the three types of equations for reactions in aqueous solutions:
 - a) MOLECULAR (all compounds written as charge neutral species)
 - b) TOTAL IONIC (all, and only, ionizable materials written as ions)
 - NET IONIC (only the substances that contribute to the formation of the PPT are shown.)
 (Corollary: all 'spectator ions' are removed from the Total Ionic Eq.)
- 6) Ions called <u>SPECTATOR IONS</u> are present, but do not participate directly in a reaction in solution.
- 7) Write Molecular, Total Ionic, Net Ionic equations for the following reactions:
 - a) Aqueous silver nitrate is added to aqueous sodium chromate to form solid silver chromate and aqueous sodium nitrate.

$$2AgNO_3 + Na_2CrO_4 --> Ag_2CrO_4 + 2NaNO_3$$

$$2Ag^{+} + 2NO_{3}^{-} + 2Na^{+} + CrO_{4^{-}} - -> Ag_{2}CrO_{4}(s) + 2Na^{+} + 2NO_{3}^{-}$$

 $2Ag^{+} + CrO_{4}^{-} - > Ag_2CrO_4(s)$

b) Aqueous nickel(II) nitrate is added to aqueous potassium carbonate to form solid nickel(II) carbonate and aqueous potassium nitrate.

NiNO₃ + K2CO₃⁻ -> NiCO₃(s) + 2KNO₃ Ni2⁺ + 2 NO₃⁻ + 2K⁺ + CO₃²⁻ --> NiCO₃(s) + 2K⁺ + 2NO₃⁻ Ni²⁺ + CO₃²⁻ --> NiCO₃ c) Aqueous ammonium chloride and aqueous lead(II) nitrate react to form solid lead (II) chloride and aqueous ammonium nitrate.

 $2NH_{4}Cl + Pb(NO_{3})_{2} --> PbCl_{2}(s) + 2NH_{4}NO_{3}$ $2NH_{4}^{+} + 2Cl^{-} + Pb^{2+} + 2NO_{3}^{-} --> PbCl_{2}(s) + 2NH_{4}^{+} + 2NO_{3}^{-}$ $2Cl^{-} + Pb^{2+} --> PbCl_{2}(s)$

- 8) Define the following"
 - a) acid <u>SUBSTANCE THAT DONATES H+ WHEN DISSOLVED IN WATER</u>
 - b) strong acid <u>ACID THAT DISSOCIATES 100%</u>
 - c) base SUBSTANCE THAT DONATES HO- WHEN DISSOLVED IN WATER
 - d) strong base BASE THAT DISSOCIATES 100%
- 9) <u>ARRHENIUS</u> (last name of scientist) who proposed that an acid is a substance that produces H⁺ ions (protons) when it is dissolved in water.
- 10) The name given to reactions that involve the transfer of electron(s) is <u>OXIDATION-</u> <u>REDUCTINO, OR 'REDOX' FOR SHORT</u>.
- 11) * List eight reaction classifications:
 - a) **<u>PRECIPITATION</u>**
 - b) DOUBLE DISPLACEMENT
 - c) <u>ACID-BASE</u>
 - d) <u>REDOX</u>
 - e) <u>SINGLE DISPLACEMENT</u>
 - f) <u>COMBUSTION</u>
 - g) SYNTHESIS (OR COMBINATION)
 - h) <u>DECOMPOSITION</u>

12) *Can a given reaction have more than one classification? (\underline{Y} or N)