CHEM 1305-Chapter 09-Handout

Define the following terms; explain the following concepts, and answer the following questions:

1) "A balanced equation establishes mole -to- mole relationships between each compound represented in the equation.
2) Define the terms:
a) stoichiometry --

Calculation of quantative relationships of reactants and products. (Assures that the Law of Conservation of Mass is intact for a given reaction.)
b) limiting reactant --

The reactant in "short supply." The amount of product that can be formed is limited by the amount of 'limiting reagent.'
c) percent yield --

$$
\left(\frac{\text { Actual yield }}{\text { Theoretical yield }}\right) 100=\% \text { Yield }
$$

3) The hydrocarbon methane $\left(\mathrm{CH}_{4}\right)$ burns according the balanced equation:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2}-->\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a) One mole of methane will produce $\underline{1}$ moles of carbon dioxide.
b) One mole of methane will produce $\underline{2}$ moles of water.
c) One mole of methane reacts with $\underline{2}$ moles of O_{2}.
d) Two moles of methane will produce $\underline{2}$ moles of carbon dioxide.
e) Two moles of methane will produce $\underline{4}$ moles of water.
f) 3.7 moles of methane will produce 7.4 moles of water.
g) 3.7 moles of O_{2} will produce $\underline{1.9}$ moles of carbon dioxide.
4) The molar mass of methane is $16.04 \mathrm{~g} / \mathrm{mol}$. Considering the equation above;
a) 16.04 g of methane will produce $\underline{1}$ moles of carbon dioxide.
b) 16.04 g of methane will produce $\underline{2}$ moles of water.
c) 32.08 g of methane will produce $\underline{2}$ moles of carbon dioxide.
d) 32.08 g of methane will produce 4 moles of water.
e) 59.35 g of methane will produce 3.7 moles of carbon dioxide.
f) 59.35 g of methane will react with 7.4 moles of O_{2}.
g) 16.04 g of methane will produce $\underline{36}$ grams of water.
5) Propane combusts according to the unbalanced equation:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2}-->\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

What mass of oxygen will be required to react exactly with 96.1 g of propane?
[hint 1: balance equation first.]
[hint 2: use "g --> mol --> mol --> g" framework, where the first and third arrows are executed with the help of the Periodic Chart, and the second arrow is executed using the mole-mole "conversion factors" found in the balanced equation.]

1. Balance Chem Eq --> $\mathrm{C}_{3} \mathrm{H}_{8}+\underline{5} \mathrm{O}_{2}-->\underline{3} \mathrm{CO}_{2}+\underline{4} \mathrm{H}_{2} \mathrm{O}$
2. Detn Molar Masses --> using C3H8 as an example...
$3 \mathrm{C}=3 * 12=36$
$8 \mathrm{H}=8^{*} 1=8$
$------------\quad \mathrm{g} / \mathrm{mol}$

Similarly,
$\mathrm{O}_{2}=32 \mathrm{~g} / \mathrm{mol}$;
$\mathrm{CO}_{2}=44 \mathrm{~g} / \mathrm{mol}$;
$\mathrm{H}_{2} \mathrm{O}=18 \mathrm{~g} / \mathrm{mol}$
3. Calculate using dimensional analysis

$$
\left(\frac{96.1 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}}{1}\right)\left(\frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44 \mathrm{gC}_{3} \mathrm{H}_{8}}\right)\left(\frac{5 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}\right)\left(\frac{32 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)=350 \mathrm{~g} \mathrm{O}
$$

6) Hydrogen sulfide reacts with oxygen to produce sulfur dioxide and water:

$$
2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2}-->2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a) How many moles of oxygen gas are required to react with 5.6 moles of hydrogen sulfide?

$$
\left(\frac{5.6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1}\right)\left(\frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}\right)=8.4 \mathrm{~mol} \mathrm{O}_{2}
$$

b) How many moles of sulfur dioxide gas will be produced by reacting 7.3 moles of hydrogen sulfide with excess oxygen?

$$
\left(\frac{7.3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1}\right)\left(\frac{2 \mathrm{~mol} \mathrm{SO}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}\right)=7.3 \mathrm{~mol} \mathrm{SO}
$$

c) How many moles of sulfur dioxide gas will be produced by reacting 7.3 moles of oxygen with excess hydrogen sulfide?

$$
\left(\frac{7.3 \mathrm{~mol} \mathrm{O}}{2} 1\right)\left(\frac{2 \mathrm{~mol} \mathrm{SO}}{2}{ }_{3 \mathrm{~mol} \mathrm{O}}^{2} \text { }\right)=4.9 \mathrm{~mol} \mathrm{SO}_{2}
$$

7) Consider a cake that requires two cups of flour and four eggs.

$$
\text { (1 cake } \sim 2 \text { cups flour } \sim 4 \text { eggs })
$$

Considering flour and eggs to be 'reactants,' which is the limiting reactant if the chef has...
a) ...two cups of flour and eight eggs? flour (2 cups flour requires 4 eggs)
b) ...eight cups of flour and two eggs? eggs (8 cups flour requires 16 eggs)
c) ...two cups of flour and two eggs? eggs (2 cups flour requires 4 eggs)
d) ...six cups of flour and twelve eggs? neither (6 cups flour requires 12 eggs)
e) ...one cup of flour and two eggs? neither (1 cups flour requires 2 eggs)
8) Consider again combustion of the hydrocarbon methane $\left(\mathrm{CH}_{4}\right)$:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2}-->\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

which is the limiting reactant given the following amounts of reactants...
a) 1 mole of methane and 2 moles of O_{2} ? neither
b) 1 mole of methane and 3 moles of O_{2} ? methane
c) 2 mole of methane and 2 moles of O_{2} ? oxygen
d) 16.04 grams of methane and 2 moles of O_{2} ? neither (16 g methane $=1 \mathrm{~mol}$ methane, and 1 mole methane requires 2 mol oxygen)
e) 16.04 grams of methane and 32.08 grams of O_{2} ? oxygen
$\left(16 \mathrm{~g}\right.$ methane $=1 \mathrm{~mol}$ methane \ldots and $32 \mathrm{~g} \mathrm{O}_{2}=1 \mathrm{~mol} \mathrm{O}_{2} \ldots$ and from the equation we see that 1 mole methane requires 2 mol oxygen)
9) The results for experiment yielded 1.279 g of product, whereas 1.352 g was expected. What is the percent yield?

$$
\frac{1.279}{1.352} \times 100=94.60 \%
$$

