

CHAPTER 2 ATOMS, MOLECULES, AND IONS

Early Ideas In Atomic Theory [2.1]

- Democritis (500 BC)
- Aristotle
- John Dalton

Daltons Atomic Theory (1803)

(1) Elements made of small, indivisible particles called "ATOMS"

(2) All atoms of a given element are IDENTICAL, & have same mass

(3) Atoms of any element are DISTINCT from atoms of any other, & hence have different masses

(4) LAW OF MULTIPLE PROPORTIONS-

Compounds = elements combine in small, whole-number ratios.

(textbook, "A compound consists of atoms of two or more elements combined in a small, whole-number ratio. In a given

compound, the numbers of atoms of each of its elements are always present in the same ratio." p67/75)

(5) CONSERVATION OF MATTER-in a chem rxn, atoms only re-arrange. [Antione Lavoisier, ~1785]

Law of Constant Composition

For compounds comprised of the same elements (e.g., NO and N₂O₃), atoms of different elements combined together, in fixed ratios [Joseph Proust]

(EX) Law Of Multiple Proportions

¿What is the ratio of the numbers of oxygen atoms that are combined with a given number of nitrogen atoms in the compounds N2O3 and NO?

$$\frac{N_2O_3}{NO} = \frac{N_2O_3}{2(NO)} = \frac{30(2N)}{20/2N} = \frac{3}{2}$$
This means N_2O_3 has $1.5\times$ more oxygen than NO_2 , put in those alone.

[Textbook discussion, p61/77]

A Process for Determining the Multiple Proportion

① ratio the two compounds being compared

(2) pick one of the compounds, and multiply by a factor (if necessary) that gives the same number of atoms of a given element on the top and bottom... can be any of the elements

③ cancel-out the element which has the same number of atoms on the top and the bottom

④ the numeric ratio which remains is the multiple proportion

Cuhitter]

(EX) Law Of Multiple Proportions

¿What is the ratio of the number of chlorine atoms for the materials described by CuxCly, wherein green crystals have a mass ratio of 0.558 gCl/g Cu, and brown crystals have a mass ratio of 1.116 gCl/gCu?

Evolution Of Atomic Theory [2.2]

Atomic Theory After The Nineteenth Century

JJ Thomson – CRT – Discovered The Electron

CRT

→ invented in 1897 by Ferdinand Brann

ightarrow precursor of CRT television

OBSERVATIONS

- \hookrightarrow casts shadow, \Rightarrow straight line
- \hookrightarrow magnetic deflection, \Leftrightarrow (–) charged
- \hookrightarrow turns wheel, \Leftrightarrow has mass
- ightarrow e/m = 1.8E8 coulomb/gram
 - same regardless of gas type
 - same regardless of electrode composition
 - same regardless of electrical source

ELECTRON

→ named per George Stoney's earlier work in 1891

→ Thomson's research -> chg/mass = 1.759 E11 C/kg

[next page: Observations & Conclusions]

- → The charge of an oil droplet is always a multiple of a specific charge, 1.6 E–19 C.
- └→ Thomson's research -> chg/mass = 1.759 E11 C/kg

$$\frac{\Box}{1} = \frac{1.603E - 19C}{M: 1.759E11C} \times \frac{1Kg}{1.759E11C} = 9.107E - 31Kg$$

$$\frac{\Box}{1} = \frac{charge}{1} \times \frac{mass}{charge} = \frac{mass}{1}$$

I CAN'T BELIVE YOU SAID THAT ...

"It was quite the most incredible event that has ever happened to me in my life. It was almost as if you fired a 15-inch shell into a piece of tissue paper and it came back and hit you."

LECTURE STOP

Summary - Atomic "Parts" Discovered

- \hookrightarrow electron Thompson CRT
- → charge (and hence mass) of electron Millikan Oil Drop
- → nucleus Rutherford Gold Foil
- → neutron Chadwick radioactive bombardment of Be

Atomic Structure And Symbolism [2.3]

Subatomic Particle Properties

	Mass (amu)	Mass Rel	Mass (g)	Rel chg	Chg (C)
electron	5.5E-4	1	9.1E-28	-1	-1.6E-19
proton	1.0073	1836	1.7E-24	+1	+1.6E-19
neutron	1.0087	1836	1.7E-24	0	0

Atomic Number & Mass Number & Chemical Symbols

A = 12; z = 6 A = 15, # neutron = 8

Isotopes and Nuclides

Frederic Soddy – Radioactive Decay – Discovered Isotopes

Nomenclature of Isotopes

- a. Z 26, A 54
- b. the isotope of iron with 30 neutrons
- c. number of protons-26, number of neutrons-31
- d. the isotope of nitrogen with 7 neutrons
- e.Z 7,A 15
- f. atomic number 7, number of neutrons-8

(a) ${}^{54}_{26}$ Fe; (b) ${}^{56}_{26}$ Fe; (c) ${}^{57}_{26}$ Fe; (d) ${}^{14}_{7}$ N; (e) ${}^{15}_{7}$ N; (f) ${}^{15}_{7}$ N

zum 4.38

(EX) Give the number of protons, electrons, and neutrons in neutral atoms of each of the following isotopes:

- (a) ${}^{10}_{5}B$
- (b) $^{199}_{80}$ Hg
- (c) $^{63}_{29}$ Cu
- (d) ${}^{13}_{6}C$
- (e) $^{77}_{34}$ Se

(a) 5 protons, 5 electrons, 5 neutrons;
(b) 80 protons, 80 electrons, 119 neutrons;
(c) 29 protons, 29 electrons, 34 neutrons;
(d) 6 protons, 6 electrons, 7 neutrons;
(e) 34 protons, 34 electrons, 43 neutrons

EOC 2.18

Atomic Mass: A Weighted Averge

 \hookrightarrow average of isotopes

ightarrow all averages have fractional values, although all individual isotopes (nuclides) comprising the average are Integers

 ${}^{24}_{12}Mg {}^{25}_{12}Mg {}^{26}_{12}Mg$

 $\begin{array}{rcl} \text{Wt Avg (Mg)} = 0.7899(23.98504) + 0.1000(24.98584) + 0.1101(25.98259) \\ = & 18.95 & + & 2.4986 & + & 2.8607 \\ = & \textbf{24.30 amu} \end{array}$

Mass Spectroscopy

Chemical Formulas [2.4]

Figure 2.16 Methane (a) a molecular formula, (b) a structural formula, (c) a ball-and-stick model, and (d) a space-filling model.

9 Molecular Elements

Empirical Vs. Molecular Formula

(EX) Empirical & Molecular Formulas [ex 2.6b] ¿A molecule of metaldehyde (a pesticide used for snails and slugs) contains 8 carbon atoms, 16 hydrogen atoms, and 4 oxygen atoms. What are the molecular and empirical formulas of metaldehyde?

(a)
$$C_8 H_{16} O_4 = Molecular$$

(b) All subscripts = even, $\therefore \div 2 : C_4 H_8 O_2$
(ii) still even, $\therefore \div 2$ agai : $C_2 H_4 O$
 $= or =$
(b) All $\div 4 (GCD = 4)$: $C_2 H_4 O$.

C2H402

130 mer - sane founda, d'Élevent molecular structure H-c-c'-o-H H-c-o-t-H H aceter aced methyl formate

structurel isomer - differ in how convolved (above)

Isomers

Dimiter MENDELER Sille : Port together the lot modern PC, accompanied by Predictions

Periodic Low - PATTARN: proper is of the elements periodically repeat

Elements vs. Atom vs. Compounds vs. Molecules vs. Ions

atom - smallost unit of stable matter alemant - subst. made of 5 type of atom molacle - 2+ atoms joined together compand - 2+ different elements joined ion - charged chemical specie mothe firm atom or molecule, but... no longer known as atom or molecule - it's and ion

504

 $\begin{array}{ccc} \mathcal{O} \equiv \mathcal{O} & \mathsf{K} & \mathsf{Na} \\ \mathcal{C} \equiv \mathcal{O} & \mathsf{K}^{\dagger} & \mathsf{Na}^{\dagger} \end{array}$ 4L Consol mono

(EX) Classify Substances

(H2O = compound, moleate 6 C = monatomic element € C(H12O6= compound, moteale (1) H_{L} = diatomic element (2) SO_{4}^{2-} = polyectruic ion (2) C_{e}^{24} = monatomic ion = monatom; c ion ("Caleium; ion")

Molecular vs. Ionic Compounds

- · <u>clements & Compound</u> are CHARGE NEUTRAL, by def. If CHARGED, then it's called on <u>lon</u>
- · IONIC ELECTRUSTATIC (opposite change): Nat ce-

Na = element	Nat = ion) Nacl = chy. neut. comps.
Cl = elemt	$cl^{-} = inn$	5

• <u>malecular</u> - held typetlu by CovAlent courds (shand electrons between atoms): H-O-H, H-H-H, DNA

- Shared est

NOTE: COVALENT Compounds will not be discussed until later in the semester... ...for now, let's focus on IONIC Compounds.

Ions: The Driving Force for Ionic Compound Formation

lonic Compounds are formed from a metal and a non-metal

Know the tell-tale sign for ionic compounds
 → Metal cation + Non-metal anion

1025

'all

• The metal and non-metal combine in a ratio which makes the overall molecule CHARGE NEUTRAL

Classes of lons

Chemical Nomenclature [2.7]

+2 -2 = 0 $C_{u} C_{2}$ copper (IF) chloride

C.B carbon di oxide

N20 a dinfige menorade

 C, Q, \leq

carbon monoxide

N205

• The metals highlighted in green are Type I.

• You may assume, for purposes of this class only, that all metals between Group 1–13 that are not green are Type II.

1 2	1 H 1.008 hydrogen 3 Li 6.94	2 4 Be 9.012	Type I Metals 13 14 15 16 17 2 (Highlighted in green) $\begin{bmatrix} 13 & 14 & 15 & 16 & 17 \\ B & 10 & 1 & 160 & 17 \\ 10 & 1 & 160 & 1 & 160 \\ 10 & 1 & 160 & 1 & 160 \\ 10 & 1 & 1 & 160 & 17 \\ 10 & 1 & 160 & 17 \\ 10 & 10 & 10 & 17 \\ 10 & 10 & 10 & 17 \\ 10 & 10 & 10 & 17 \\ 10 & 10 & 10 & 10 \\ 10 & 10 & 10 & 10$							18 2 He 4.003 helium 10 Ne 20.18								
3	11 Na 22.99 sodium	12 Mg 24.31 magnesium	3	4	5	6	7	8	9	10	11	12	13 AI 26.98 aluminum	14 Si 28.09 silicon	15 P 30.97 phosphorus	16 S 32.06 sulfur	17 CI 35.45 chlorine	18 Ar 39.95 argon
4	19 K 39.10 potassium	20 Ca 40.08 calcium	21 Sc 44.96 scandium	22 Ti 47.87 titanium	23 V 50.94 vanadium	24 Cr 52.00 chromium	25 Mn 54.94 manganese	26 Fe 55.85 iron	27 Co 58.93 cobalt	28 Ni 58.69 nickel	29 Cu 63.55 copper	30 Zn 65.38 zinc	31 Ga 69.72 gallium	32 Ge 72.63 germanium	33 As 74.92 arsenic	34 Se 78.97 selenium	35 Br 79.90 bromine	36 Kr 83.80 krypton
5	37 Rb 85.47 rubidium	38 Sr 87.62 strontium	39 Y 88.91 yttrium	40 Zr 91.22 zirconium	41 Nb 92.91 niobium	42 Mo 95.95 molybdenum	43 Tc [97] technetium	44 Ru 101.1 ruthenium	45 Rh 102.9 rhodium	46 Pd 106.4 palladium	47 Ag 107.9 silver	48 Cd 112.4 cadmium	49 In 114.8 indium	50 Sn 118.7 tin	51 Sb 121.8 antimony	52 Te 127.6 tellurium	53 126.9 iodine	54 Xe 131.3 xenon
6	55 Cs 132.9 cesium	56 Ba 137.3 barium	⁵⁷⁻⁷¹ La– Lu *	72 Hf 178.5 hafnium	73 Ta 180.9 tantalum	74 W 183.8 tungsten	75 Re 186.2 rhenium	76 OS 190.2 osmium	77 Ir 192.2 iridium	78 Pt 195.1 platinum	79 Au 197.0 gold	80 Hg 200.6 mercury	81 TI 204.4 thallium	82 Pb 207.2 lead	83 Bi 209.0 bismuth	84 Po [209] polonium	85 At [210] astatine	86 Rn [222] radon
7	87 Fr [223] francium	88 Ra [226] radium	⁸⁹⁻¹⁰³ Ac– Lr _{**}	104 Rf [267] rutherfordium	105 Db [270] dubnium	106 Sg [271] seaborgium	107 Bh [270] bohrium	108 HS [277] hassium	109 Mt [276] meitnerium	110 Ds [281] darmstadtium	111 Rg [282] roentgenium	112 Cn [285] copernicium	113 Uut [285] ununtrium	114 Fl [289] flerovium	115 Uup [288] ununpentium	116 LV [293] livermorium	Uus [294] ununseptium	118 Uuo [294] ununoctium
			**	57 La 138.9 Ianthanum 89 AC [227] actinium	58 Ce 140.1 cerium 90 Th 232.0 thorium	59 Pr 140.9 praseodymium 91 Pa 231.0 protactinium	60 Nd 144.2 neodymium 92 U 238.0 uranium	61 Pm [145] promethium 93 Np [237] neptunium	62 Sm 150.4 samarium 94 Pu [244] plutonium	63 Eu 152.0 europium 95 Am [243] americium	64 Gd 157.3 gadolinium 96 Cm [247] curlum	65 Tb 158.9 terbium 97 Bk [247] berkelium	66 Dy 162.5 dysprosium 98 Cf [251] californium	67 Ho 164.9 holmium 99 ES [252] einsteinium	68 Er 167.3 erbium 100 Fm [257] fermium	69 Tm 168.9 thullum 101 Md [258] mendelevium	70 Yb 173.1 ytterbium 102 No [259] nobelium	71 Lu 175.0 Iutetium 103 Lr [262] Iawrencium

DISCLAIMER:

• some of the non-highlighted metals are, indeed, Type 1 -however, you need not memorize them. If that information is needed, you will be informed.

• as far as memorizing, you only need to memorize that the "6-pack" and the first two Groups are Type I.

Examples of Type I, II, & III Compounds

I. M + nM

CaCl₂

III. nM + nM NO N₂O CO CO₂

POLYATOMIC ACIDS AND IONS

c	ommon Polya	tomic lons	
Name	Formula	Related Acid	Formula
ammonium	NH4 ⁺		
hydronium	H ₃ O ⁺		
oxide	O ²⁻		
peroxide	02 ²⁻		
hydroxide	OH		
acetate	CH ₃ COO ⁻	acetic acid	СН ₃ СООН
cyanide	CN⁻	hydrocyanic acid	HCN
azide	N3 ⁻	hydrazoic acid	HN ₃
carbonate	CO3 2-	carbonic acid	H ₂ CO ₃
bicarbonate	HCO3-		
nitrate	NO ₃ ⁻	nitric acid	HNO ₃
nitrite	NO ₂ ⁻	nitrous acid	HNO ₂
sulfate	SO4 ²⁻	sulfiric acid	H ₂ SO ₄
hydrogen sulfate	HSO ₄ ⁻		
sulfite	SO3 ²⁻	sulfurous acid	H ₂ SO ₃
hydrogen sulfite	HSO ₃ ⁻		
phosphate	PO ₄ ³⁻	phosphoric acid	H ₃ PO ₄
hydrogen phosphate	HPO ₄ ²⁻		
dihydrogen phosphate	H ₂ PO ₄ ⁻		
perchlorate	ClO ₄ -	perchloric acid	HCIO ₄

ic, ous ACIDS - ate, ite ANIONS

element -> ide ic -> ate ous -> ite

S S^2- SO2 SO3 SO3^2- SO4^2- H2SO3 H2SO4

SPECIAL CASE - BINARY ACIDS La "ag" (in water) is. "g" (pure) pauls

Names of Some Simple Acids

Name of Gas	Name of Acid
HF(g), hydrogen fluoride	HF(aq), hydrofluoric acid
HCl(g), hydrogen chloride	HCI(aq), hydrochloric acid
HBr(g), hydrogen bromide	HBr(aq), hydrobromic acid
HI(g), hydrogen iodide	HI(aq), hydroiodic acid
H ₂ S(g), hydrogen sulfide	H ₂ S(aq), hydrosulfuric acid

Table 2.12

COMMON NAMES - "The Resistant Ones"

H2O = water (not dihydrogen monoscide) NH3 = ammonia (nut nitrogen tichydride)] H+ NH++ NH4 CR ammonium

(EX) IONIC VS. MO ¿Are the following lo	LECULAR (COVALENT) onic or Covalent/Molecular? Why? [ex 2.12b]
و کەر	= moleculor ; diatomic nM + nM
b Ca F₂	= ibhic; M+nM, Ca2++2F
O Nother	= molecular; distrime M+ nM
(D Alz (504),	= ionic; M+ nM (polyatomic); ZAL + 3 SOL

(EX) NOMENCLATURE:

NAME -> FORMULA

(EX) NOMENCLATURE:

NAME -> FORMULA

(EX) NOMENCLATURE: FORMULA -> NAME

b

NO (73)

Type I name

۹ I

KNO3 (TA)

Type I name

no II, no III

no II, yes III --> prefixes

Al203 (11) ල

Type I name

(2) Niz (SO4)3 (T2)

Type I name

no II, no III

yes II --> RN (around the bend)

(EX) NOMENCLATURE: FORMULA -> NAME

YES

Roman

Numeral

YES

Prefix

YES

Stop

