

CHAPTER 3 COMPOSITION OF SUBSTANCES AND SOLUTIONS

Formula Mass And The Mole Concept [3.1]

BASIS OF KEY FUTURE CHAPTER 4 TOPIC: STOICHIOMETRY

Count-by-Weighing: The Concept

Scale-Up and Count-by-Weighing: The Mole, Molar Mass, and Avogadro's Number

Scale-up Factor: Avoga	idro's	Number (6.02E23)
$scale \ up \ factor$	=	${6.02E23~items\over mole}$
	=	$rac{6.02 imes 10^{23}\ items}{mole}$

Count-by-Weight Factor: Molar Mass

→ mass of 1 mole of a substance → mass of 6.02E23 parts of a substance

 $small\,scale\,up\,factor = rac{12\,items}{dozen}$

FACTOIDS

- ① "Mole" derives from word meaning "mass," but it refers to the number of "particles" or "bits" or "pieces" or "entities" of mass
- 2 Mole is one of 7 fundamental SI units
- ③ Definition: amount of material "discrete entities" as the number in exactly 12 g of Carbon of Carbon-12
- (4) $N_A = AN = Avagadro's$ Number = 6.022 x 10²³

	6.022 x 10 ²³ entities		1 mol
1 mol	or	6.022 x 10 ²³ entities	

(5) Mole is just a number with a name, just like the number 12

6.022×10^{23} entities		12 entities	
1 mol	VS	1 dozen	

Just how large is a 'mole' of something

$? age = \frac{6.02E23 \ s}{60 \ s} \cdot \frac{1 \ \text{min}}{60 \ s} \cdot \frac{1 \ hr}{60 \ \text{min}} \cdot \frac{1 \ day}{24 \ hr} \cdot \frac{1 \ yr}{365 \ day} \cdot \frac{1 \ age}{2E16 \ yr} = 954,465 \ ages$
? humans = $\frac{6.02E23 \text{ cells}}{100E12 \text{ cells}} = 6E9 \text{ humans}$
$[100trillion] \qquad [6billion]$? in = $\frac{6.02E23 \text{ grains}}{1 \text{ grain}} \cdot \frac{10^{-12} \text{ m}^3}{1 \text{ grain}} \cdot \frac{1 \text{ USA}}{10^{13} \text{ m}^2} \cdot \frac{100 \text{ cm}}{1 \text{ m}} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} = 2.37 \text{ in}$

1 ASIDE 1

USING MOLAR MASS AND AVOGADRO'S NUMBER IN "g-mole-particles" CALCULATIONS

(EX) $g \rightarrow atoms$

¿How many copper atoms are in 5.00 g of copper wire?

[Whitten ex 3.5]

$\frac{\Box atoms Cu}{1} = (CF)(grien)$	Mapping A
$\frac{\Box \ atoms \ Cu}{1} = \ \frac{5.00 \ g \ Cu}{1} \cdot$	g molar mass (g/mol)
$\frac{\Box \ atoms \ Cu}{1} = \frac{5.00 \ g \ Cu}{1} \cdot \frac{1 \ mole \ Cu}{63.55 \ g \ Cu}$	(6.02E23 items/mol)
$\frac{\Box \ atoms \ Cu}{1} = \frac{5.00 \ g \ Cu}{1} \cdot \frac{1 \ mole \ Cu}{63.55 \ g \ Cu} \cdot \frac{6.023 E23 \ atoms \ Cu}{1 \ mol \ Cu}$	(#particles)
$rac{\Box \ atoms \ Cu}{1} = \ rac{5.00 \ g \ Cu}{1} \cdot rac{1 \ mole \ Cu}{63.55 \ g \ Cu} \cdot rac{6.023 E23 \ atoms \ Cu}{1 \ mol \ Cu} =$	$=rac{4.74E22\ atoms\ Cu}{1}$

Flight Path Analogy

- start @ 5.00 g,Cu
- depart g,Cu -> arrive mol,Cu
- depart mol,Cu -> arrive # particles, Cu (your destinaton)

LOOKING AHEAD INTO CHAPTER 04: Why you need to fully understand g-mol-particle calculations

Determining Empirical And Molecular Formulas [3.2]

PERCENT COMPOSITION

- → Determining Percent Composition from Formula Mass
- ${\displaystyle \rightarrowtail}$ Deriving Empirical Formulas from Percent Composition
- → Deriving of Molecular Formulas (MM given)

(EX) g -> EF

¿A sample of the black mineral hematite (Figure 3.12), an oxide of iron found in many iron ores, contains 34.97 g of iron and 15.03 g of oxygen. What is the empirical formula of hematite?

[ex 3.11b]

(EX) Wt% -> MF

¿What is the molecular formula of a compound with a percent composition of 49.47% C, 5.201% H, 28.84% N, and 16.48% O, and a molecular mass of 194.2 amu?

$$\begin{array}{c} \text{(b)} \quad (1609) \quad (\text{Intensive property}) \\ \hline (1600) \quad (1609) \quad (16$$

	CHEM 1411 Lecture Schedule			
СНЕМ	I 1411			Fall 2019
v1				Dr. Stephenson
Class	Day	Date	Chapter/Section	Description
1	Т	27-Aug	1.1-1.3	Matter, Physical and Chemical Properties
2	R	29-Aug	1.4-1.5	Measurements, Accuracy/Precision
3	Т	3-Sep	1.6	Dimensional Analysis
4	R	5-Sep	2.1-2.3	Atomic Theory and Structure
5	Т	10-Sep	2.4-2.5	Formulas and the Periodic Table
6	R	12-Sep	2.6-2.7	Molecular and Ionic Compounds, Nomenclature
7	Т	17-Sep	3.1	Formula mass and The Mole
8	R	19-Sep	3.2-3.3	Empirical and Molecular Formulas, Molarity
9	Т	24-Sep	3.4	Solution Concentrations
10	R	26-Sep		Exam 1
11	Т	1-Oct	4.1-4.2	Balancing Equations; Ionic & Acid-Base Reactions
12	R	3-Oct	4.2-4.3	Redox; Stoichiometry
13	Т	8-Oct	4.4-4.5	Reaction Yields; Quantitative Chemical Analysis
14	R	10-Oct	5.1-5.2	Energy and Calorimetry
15	Т	15-Oct	5.3	Enthalpy
16	R	17-Oct	6.1	Electromagnetic Energy
17	Т	22-Oct	6.2-6.3	Bohr Model and Quantum Theory
18	R	24-Oct	6.4-6.5	Quantum Numbers & Electronic Structure
19	Т	29-Oct	6.5	Periodic Variations
20	R	31-Oct		Exam 2
21	Т	5-Nov	7.1-7.3	Lewis Symbols and Structures
22	R	7-Nov	7.4	Formal Charge and Resonance
23	Т	12-Nov	7.6	Molecular Structure and Polarity
24	R	14-Nov	8.1-8.3	Valance Bond Theory, Hybrid Orbitals, and Multiple Bonds
25	Т	19-Nov	9.1-9.2	Gas Pressure and The Ideal Gas Law
26	R	21-Nov	9.3-9.4	Stoichiometry of Gases, Effusion/Diffusion of Gases
27	Т	26-Nov	9.5-9.6	Kinetic-Molecular Theory and Non-Ideal Gas Behavior
	R	28-Nov		Thanksgiving Holiday
28	Т	3-Dec		Exam 3
29	R	5-Dec		Final Exam Review
30		TBA		Final Exam

Note: Schedule is subject to change. Last Day to drop with a "W" is April 1st

Molarity [3.3]

Solution: Beyond the "Homogeneous Mixture" Definition

A very usefull form of the M = mol/L equation

 $M = \frac{mml}{L} \qquad M = 0.5 M_{\odot}$ $J \qquad J$

(EX) $C \cdot V = C' \cdot V'$ (calc Vol added)

¿A lab-tech wants to dilute 50. mL of 3.50 M sulfuric acid solution to 2.00 M. (a) To whatvolume must the original solution be diluted? (b) What volume of water (solvent) must be added to the original solution?

$$C_{b} \bullet V_{b} = C_{a} \bullet V_{a}$$

$$(3.50 \ M)(50.0 \ mL) = (2.00 \ ML)V_{a}$$

$$(3.50 \ M)(50.0 \ mL)$$

$$(2.00 \ mL) = V_{a} = 87.5 \ mL$$

$$V_{total} = V_{initial} + V_{added}$$
$$V_{added} = V_{total} - V_{initial}$$
$$V_{added} = 87.5 mL - 50. mL$$
$$V_{added} = 37.5 mL$$

Analysis: 2-M's and 1-Vol given, and looking for a 2nd Vol -> CV=C'V' problem

Can use any unit of volume, or concentration, but must be consistent on both sides

• Use "M" as unit (but don't confuse with "M" used as variable)

(EX) CV = C'V'¿How many mL of 18.0 M H2SO4 are required to prepare 1.00 L of a 0.900 M solution of H2SO4?

Analysis: 2-M's and 1-Vol given, and looking for a 2nd Vol \rightarrow CV=C'V' problem

Other Units For Solution Concentrations [3.4]

Mass Percentage	
Massi ciocinage	
PERCENTAGE = % = (part/whole) × 100 = fraction × 100	
(EX) Fraction vs. Percent	u boyo2 (b) What
percentage of red widgets?	
3/20 = 0.15 (15 put a)	S700.
$[3/(3+17)] \cdot 100 = 3/20 \cdot 100 = 0.15 \cdot 100 = 15\%$	$\left(\begin{array}{c} \left(\mathcal{W}\right) prin \right) \\ \left(\begin{array}{c} \left(\mathcal{W}\right) \\ \overline{572} \end{array}\right)$
(EX) Wt% of Solution Components	
A bottle of a tile cleaner contains 135 g and 775 g water. What is the weight percent	HCI? [Ex 3.22b]
parts $135g_{\mu\nu}$ 135 $g_{\mu\nu}$ 135 $g_{\mu\nu}$	
fraction HCl = $\frac{1}{whole} = \frac{1}{135g_{HCl} + 775g_{W}} = \frac{0.148}{910.g_{total}} = 0.148$	
$\% = fraction \bullet 100 = 0.148 \bullet 100 = 14.8\%$	

(EX) Wt% \rightarrow g, vol (harder) ¿What volume of 37.2% HCl solution, which has a density of 1.19 g/mL, contains 125 g of HCl? [Ex 3.23b] $? \frac{mL_{SOLN}}{1} = \frac{125 \ g_{HCl}}{1} \bullet \frac{100 \ g_{SOLN}}{37.2 \ g_{HCl}} \bullet \frac{1 \ mL_{SOLN}}{1.19 \ g_{SOLN}} = 282 \ mL_{SOLN}$ 1 KEY TO SUCCESS: do not confuse "HCI" with "HCI solution" 37.2 Hee 100 pts Solv

Volume Percentage (P157 (165)
La basic formula: (Part/cohote)100 La V/v = vol/vol [ex: mL (solute)/mL (solvent)]
Mass-Volume Percentage (Mixed Fractions)
- m/v = miss/vol (Sx: 9 (solute)/mL (solver)]
→ blood is reported in the 3/deciliter (~pp 100k)
Parts per Million and Parts per Billion
- Analogous to 20, which is merely PPH !!!
· 27% nears 27-out-of-100, or pph
is bet pph (20 by multiply by 100
Pp+ " 1000
ppm 1,000,000
دون رون رون رون المراجع

(EX) Mass -> ppm

¿A 50.0-g sample of industrial wastewater was determined to contain 0.48 mg of mercury. Express the mercury concentration of the wastewater in ppm.

