CHAPTER 3 COMPOSITION OF SUBSTANCES AND SOLUTIONS

CHAPTER 3 COMPOSITION OF SUBSTANCES AND SOLUTIONS

Formula Mass And The Mole Concept [3.1]

Count-by-Weighing: The Concept

$$
\frac{\square \text { nails }}{1}=\frac{984 g}{1} \cdot \frac{1 \text { nail }}{12 g}=\frac{82 \text { nails }}{1}
$$

Scale-Up and Count-by-Weighing: The Mole, Molar Mass, and Avogadro's Number

Scale-up Factor: Avogadro's Number (6.02E23)

\[

\]

Count-by-Weight Factor: Molar Mass
small scale up factor $=\frac{12 \text { items }}{\text { dozen }}$

\downarrow ASIDE \downarrow

FACTOIDS

(1) "Mole" derives from word meaning "mass," but it refers to the number of "particles" or "bits" or "pieces" or "entities" of mass
(2) Mole is one of 7 fundamental SI units
(3) Definition: amount of material "discrete entities" as the number in exactly 12 g of Carbon of Carbon-12
(4) $\mathrm{N}_{\mathrm{A}}=\mathrm{AN}=$ Avagadro's Number $=6.022 \times 10^{23}$

$$
\frac{6.022 \times 10^{23} \text { entities }}{1 \mathrm{~mol}} \text { or } \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { entities }}
$$

(5) Mole is just a number with a name, just like the number 12
$\frac{6.022 \times 10^{23} \text { entities }}{1 \mathrm{~mol}}$ vs $\frac{12 \text { entities }}{1 \text { dozen }}$

1 mole of stacked pennies $=$ to moon and back... 100 million times
1 mole of seconds $=1$ million ages of the supposed age of the universe 1 mole of human cells $=6$ billion people

1 mole of sand $=$ cover entire USA...2.4 inches deep
? age $=\frac{6.02 E 23 \mathrm{~s}}{6} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \cdot \frac{1 \text { day }}{24 \mathrm{hr}} \cdot \frac{1 \mathrm{yr}}{365 \text { day }} \cdot \frac{1 \text { age }}{2 E 16 \mathrm{yr}}=954,465$ ages
? humans $=\frac{6.02 \mathrm{E} 23 \mathrm{cells}}{} \cdot \frac{1 \text { body }}{\begin{array}{c}100 \mathrm{E} 12 \text { cells } \\ {[100 \text { trillion }]}\end{array}}=6 \mathrm{E} 9$ humans
$?$ in $=\frac{6.02 E 23 \text { grains }}{} \cdot \frac{10^{-12} \mathrm{~m}^{3}}{1 \text { grain }} \cdot \frac{1 U S A}{10^{13} \mathrm{~m}^{2}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=2.37 \mathrm{in}$

\uparrow ASIDE \uparrow

USING MOLAR MASS AND AVOGADRO'S NUMBER IN "g-mole-particles" CALCULATIONS

(EX) $\mathrm{g}->$ atoms
¿How many copper atoms are in 5.00 g of copper wire?
[Whiten ex 3.5]

$$
\begin{aligned}
& \frac{\square \text { atoms } C u}{1}=(C F)(\text { glen }) \\
& \frac{\square \text { atoms } C u}{1}=\frac{5.00 \mathrm{gCu}}{1} . \\
& \frac{\square \text { atoms } C u}{1}=\frac{5.00 \mathrm{~g} C u}{1} \cdot \frac{1 \text { mole } C u}{63.55 \mathrm{gCu}} .
\end{aligned}
$$

$\frac{\square \text { atoms } \mathrm{Cu}}{1}=\frac{5.00 \mathrm{~g} \ell \mathrm{u}}{1} \cdot \frac{1 \text { mole } \ell^{\prime} u}{63.55 \mathrm{~g} \ell^{\prime} u} \cdot \frac{6.023 \mathrm{E} 23 \text { atoms Cu}}{1 \text { molలu}}$

\square atoms $\mathrm{Cu}, \frac{5.00 \mathrm{~g} \mathrm{Cu}}{1} \cdot \frac{1 \text { mole } \mathrm{Cu}}{63.55 \mathrm{~g} \mathrm{Cu}} \cdot \frac{6.023 \mathrm{E} 23 \mathrm{atoms} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}=\frac{4.74 \mathrm{E} 22 \mathrm{atoms} \mathrm{Cu}}{1}$

Flight Path Analogy

- start @ $5.00 \mathrm{~g}, \mathrm{Cu}$
- depart g,Cu $->$ arrive mol,Cu
- depart mol,Cu $->$ arrive \# particles, Cu (your destinaton)

$\square \frac{\square \text { atoms } C u}{1}=\frac{5.00 \mathrm{gCu}}{1} \cdot \frac{1 \text { mole } C u}{63.55 \mathrm{~g} \mathrm{Cu}} \cdot \frac{6.023 E 23 \text { atoms } C u}{1 \mathrm{~mol} \mathrm{Cu}}=\frac{4.74 E 22 \text { atoms } \mathrm{Cu}}{1}$

LOOKING AHEAD INTO CHAPTER 04:

Why you need to fully understand g-mol-particle calculations

(EX) molecules $\rightarrow>$ gram

¿How many grams are there in 9.545E22 molecules of butane (C4H8)?

$\frac{\square g B u}{1}=\frac{9.545 E 22 \text { motecules } B u}{1} \cdot \frac{1 \text { mote } B u}{6.022 E 23 \text { motecules } B u} \cdot \frac{58.05 g B u}{1 \text { mol Bu }}=\frac{9.201 g B u}{1}$

Determining Empirical And Molecular Formulas [3.2]

Chain (MF) is a sum of individual links (EF)

PERCENT COMPOSITION

\hookrightarrow Determining Percent Composition from Formula Mass
\hookrightarrow Deriving Empirical Formulas from Percent Composition
\hookrightarrow Deriving of Molecular Formulas (MM given)

(EX) $g \rightarrow E F$
¿A sample of the black mineral hematite (Figure 3.12), an oxide of iron found in many iron ores, contains 34.97 g of iron and 15.03 g of oxygen. What is the empirical formula of hematite?
(a) $\mathrm{Fe}_{x} \mathrm{O}_{y}$

$$
\begin{aligned}
& \text { (b) } \mathrm{Fe}: \begin{array}{l|l}
34.97 \mathrm{~g} & 1 \mathrm{ml} \\
\hline 55.85 \mathrm{~s}
\end{array}=\frac{0.6261}{0.6261}=1.000 \\
& 0: \frac{15.03 \mathrm{~g}}{} \left\lvert\, \frac{1 \mathrm{~mol}}{16.00 \mathrm{~g}}=\frac{0.9394}{0.6261}=1.500\right.
\end{aligned}
$$

2.000
3.000

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}
$$

(EX) Wt\% \rightarrow MF
¿What is the molecular formula of a compound with a percent composition of $49.47 \% \mathrm{C}, 5.201 \% \mathrm{H}$, $28.84 \% \mathrm{~N}$, and 16.48% O, and a molecular mass of 194.2 amu ?
assure $100 g$ (Intensive poopents)
(a) $\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{~N}_{z} \mathrm{O}_{n}$

(b) $C: 49.47, \frac{1}{12.012}=\frac{4.119}{1.030}=4.000$ $H:$| $5.201 g$ | 1 |
| :--- | :--- |
| 1.019 | |$=\frac{5.150}{1.030}=5.000 \quad \begin{aligned} & \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}\end{aligned}$

$N:$| 28.84 g | 1 |
| :--- | :--- |
| | 14.01 g |$=\frac{2.059}{1.030}=2.000$

$0 \frac{16.48 \%}{}{ }_{16.00 \mathrm{~d}}=\frac{1.030}{1.030}=1.000$

CHEM 1411 Lecture Schedule				
CHEM 1411 v1				Fall 2019 Dr. Stephenson
Class	Day	Date	Chapter/Section	Description
1	T	27-Aug	1.1-1.3	Matter, Physical and Chemical Properties
2	R	29-Aug	1.4-1.5	Measurements, Accuracy/Precision
3	T	3-Sep	1.6	Dimensional Analysis
4	R	5-Sep	2.1-2.3	Atomic Theory and Structure
5	T	10-Sep	2.4-2.5	Formulas and the Periodic Table
6	R	12-Sep	2.6-2.7	Molecular and Ionic Compounds, Nomenclature
7	T	17-Sep	3.1	Formula mass and The Mole
8	R	19-Sep	3.2-3.3	Empirical and Molecular Formulas, Molarity
9	T	24-Sep	3.4	Solution Concentrations
10	R	26-Sep		Exam 1
11	T	1-Oct	4.1-4.2	Balancing Equations; Ionic \& Acid-Base Reactions
12	R	3-Oct	4.2-4.3	Redox; Stoichiometry
13	T	8-Oct	4.4-4.5	Reaction Yields; Quantitative Chemical Analysis
14	R	10-Oct	5.1-5.2	Energy and Calorimetry
15	T	15-Oct	5.3	Enthalpy
16	R	17-Oct	6.1	Electromagnetic Energy
17	T	22 -Oct	6.2-6.3	Bohr Model and Quantum Theory
18	R	24-Oct	6.4-6.5	Quantum Numbers \& Electronic Structure
19	T	29-Oct	6.5	Periodic Variations
20	R	31-Oct		Exam 2
21	T	5-Nov	7.1-7.3	Lewis Symbols and Structures
22	R	7-Nov	7.4	Formal Charge and Resonance
23	T	12-Nov	7.6	Molecular Structure and Polarity
24	R	14-Nov	8.1-8.3	Valance Bond Theory, Hybrid Orbitals, and Multiple Bonds
25	T	19-Nov	9.1-9.2	Gas Pressure and The Ideal Gas Law
26	R	21-Nov	9.3-9.4	Stoichiometry of Gases, Effusion/Diffusion of Gases
27	T	26-Nov	9.5-9.6	Kinetic-Molecular Theory and Non-Ideal Gas Behavior
	R	28-Nov		Thanksgiving Holiday
28	T	3-Dec		Exam 3
29	R	5-Dec		Final Exam Review
30		TBA		Final Exam

Note: Schedule is subject to change. Last Day to drop with a "W" is April 1st

Solution: Beyond the "Homogeneous Mixture" Definition

A very usefull form of the $M=\mathrm{mol} / \mathrm{L}$ equation

$$
M=\frac{\text { mol }_{\text {solute }}}{L_{\text {solution }}} \longrightarrow \mathrm{mol}=M \cdot L
$$

Three common types of Molarity problems
\longrightarrow Calculate Molarity from g
\longrightarrow Calculate g from Molarity (a stoichiometry problem in which M serves as CF)
\longrightarrow Dilution/Concentration $\left(M_{1} V_{1}=M_{2} V_{2}\right)$

$$
M=\frac{\mathrm{mal}_{\mathrm{L}}}{\rho} \quad M=0.5 \bar{M}
$$

(EX) Use M to calc g (merely a Stoichiometry problem, using M as a CF)
sHow many grams of CaCl2 ($\mathrm{MM}=110.98 \mathrm{~g} / \mathrm{mol})$ are contained in 250.0 phtrora 0.200 M solution?

$$
g_{C a C l_{2}}=\frac{250.0 m L_{C a C l_{2}}}{1} \cdot \frac{1 L_{C a C l_{2}}}{1000 m L_{C a C l_{2}}} \bullet \frac{0.200 \mathrm{~mol}_{\mathrm{CaCl}_{2}}}{1 L_{\mathrm{CaCl}_{2}}} \bullet \frac{110.98 g_{\mathrm{CaCl}_{2}}}{1 \mathrm{~mol}_{\mathrm{CaCl}_{2}}}=5.55 \mathrm{~g}
$$

$$
\left.\frac{\nabla_{g_{1} \mathrm{Call}_{2}}}{1}=\frac{250.0 \mathrm{nd}}{1} 11 \underline{1000 \mathrm{mb}} \right\rvert\, \begin{aligned}
& 1 \mathrm{ml} \\
& 1
\end{aligned}
$$

Concentration/Dilutions

(EX) $\mathrm{C} \cdot \mathrm{V}=\mathrm{C}^{\prime} \cdot \mathrm{V}^{\prime} \quad$ (calc Vol added)
¿A lab-tech wants to dilute 50 . mL of 3.50 M sulfuric acid solution to 2.00 M . (a) To whatvolume must the original solution be diluted? (b) What volume of water (solvent) must be added to the original solution?

$$
\begin{aligned}
& C_{b} \cdot V_{b}=C_{a} \cdot V_{a} \\
& (3.50 \mathrm{M})(50.0 \mathrm{~mL})=(2.00 \mathrm{M}) V_{a} \\
& \frac{(3.50 \mathrm{M})(50.0 \mathrm{~mL})}{(2.00 . \mathrm{mL})}=V_{a}=87.5 \mathrm{~mL}
\end{aligned}
$$

Analysis:

2-M's and 1-Vol given, and looking for a 2nd Vol
\rightarrow CV=C'V' problem

$$
\begin{aligned}
& V_{\text {total }}=V_{\text {initial }}+V_{\text {added }} \\
& V_{\text {added }}=V_{\text {total }}-V_{\text {initial }} \\
& V_{\text {added }}=87.5 \mathrm{~mL}-50 . \mathrm{mL} \\
& V_{\text {added }}=37.5 \mathrm{~mL}
\end{aligned}
$$

- Can use any unit of volume, or concentration, but must be consistent on both sides
- Use " M " as unit (but don't confuse with " M " used as variable)
(EX) CV = C'V'
¿How many mL of 18.0 M H 2 SO 4 are required to prepare 1.00 L of a 0.900 M solution of H 2 SO 4 ?

Analysis:
2-M's and 1-Vol given, and looking for a 2nd Vol \quad > CV=C'V' problem

$$
\begin{gathered}
\mathrm{M} V=\mathrm{M}^{\prime} \mathrm{V}^{\prime} \\
18.0 \mathrm{x}=(0.900)(1.00) \\
\mathrm{x}=50.0 \mathrm{~mL}
\end{gathered}
$$

Lecture

Mass Percentage

PERCENTAGE $=\%=($ part $/$ whole $) \times 100$
$=$ fraction $\times 100$
(EX) Fraction vs. Percent
¿You have 3 red widgets and 17 black widgets. (a) What fraction of red widgets do you have? (b) What percentage of red widgets?
(EX) Wt\% of Solution Components of (tl
¿A bottle of a tile cleaner contains 135 g and 775 g water. What is the weight percent HCl ? [Ex 3.22b]

$$
\text { fraction } \mathrm{HCl}=\frac{\text { parts }}{\text { whole }}=\frac{135 g_{H C l}}{135 g_{H C l}+775 g_{W}}=\frac{135 g_{H C l}}{910 . g_{\text {total }}}=0.148
$$

$$
\%=\text { fraction } \bullet 100=0.148 \cdot 100=14.8 \%
$$

$$
\begin{aligned}
& 3 / 20=0.15 \\
& {[3 /(3+17)] \cdot 100=3 / 20 \cdot 100=0.15 \cdot 100=15 \%}
\end{aligned}
$$

(EX) Wt\% $\rightarrow \mathrm{g}$, vol (harder)
¿What volume of $37.2 \% \mathrm{HCl}$ solution, which has a density of $1.19 \mathrm{~g} / \mathrm{mL}$, contains 125 g of HCl ? [Ex 3.23b]

$$
? \frac{m L_{\text {SOLN }}}{1}=\frac{125 g_{H C l}}{1} \cdot \frac{100 g_{\text {solv }}}{37.2 g_{\text {HCl }}} \cdot \frac{1 m L_{\text {solv }}}{1.19 g_{\text {souv }}}=282 m L_{\text {solv }}
$$

KEY TO SUCCESS: do not confuse "HCl" with "HCl solution"
\longrightarrow basic formcla: (paut/whote) 100
$\rightarrow v / v=v_{0 l} / v o l$ [ex: mL(solute)/mL (solvent)]

Mass-Volume Percentage (Mixed Fractions)

$$
\begin{aligned}
& \longrightarrow \mathrm{m} / v=\text { mass } / v o l \quad[\text { Sxi } 9 \text { (solute) } / \mathrm{mL} \text { (Solvet) }] \\
& \longrightarrow \text { blood is reportes in } \mu \mathrm{g} / \text { deciliter (upplook) }
\end{aligned}
$$

Parts per Million and Parts per Billion
\hookrightarrow Analogons to $\%_{0}$, wide is merech PPH !!!

- 27% means 27 -out-of- 100 , or pph
\rightarrow 6et pph (20 by multipl) by 100

ppt	11	1000
ppm		$1,000,000$
ppb 6		$1,000,000,000$

(EX) Mass $->$ ppm
¿A 50.0-g sample of industrial wastewater was determined to contain 0.48 mg of mercury. Express the mercury concentration of the wastewater in ppm.
(EX) ppm $->$ g(solute)
¿A 100. g sample of water is contaminated with 19.2 ppm of mercury. How milligrams of Hg are in the sample? [Ex 3.25z]

$$
? \frac{m g_{H g}}{1}=\frac{100 . g_{W}}{1} \cdot \frac{19.2 g_{H g}}{10^{6} g_{W}} \bullet \frac{1000 m g_{H g}}{1 g_{\text {Hg }_{g}}}=1.92 m g_{\text {Hg }_{g}}
$$

