CHAPTER 4
STOICHIOMETRY \& CHEMICAL EQUATIONS

CHAPTER 6 INTRO TO CHEMICAL REACTIONS

Writing and Balancing Chemical Equations [4.1]

¿WHY BALANCE CHEMICAL EQUATIONS?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \quad->\quad 2 \mathrm{H}_{2} \mathrm{O}
$$

(see "DrStephensonChemistry" youtube videos)

1. ID "lone" elements
(pure elements that are all "alone")
2. ID "twin" elements (element whose symbol appears once-and-only-once on each side of the equation. One of the twins lives on
the reactant-side, the other on the product-side)

3a. START with the Twin Element with the largest subscript.

3b. END by determining the coefficient of a Lone Element, if present.
4. Exploit opportunities to employ two tricks of the trade:
(i) cross-multiplication
(ii) fractionations

$$
\mathrm{CH}_{4}+\mathrm{O}_{2}->\quad \mathrm{H}_{2} \mathrm{O}
$$

CROSS MULTIPLY

$$
\frac{2}{1}\left(1 S^{K}+\frac{3}{2} C_{2} \rightarrow 1 \underline{S b}_{3}\right)
$$

'ONE-SHORT’ situation (2 or 3 known; 3 of 4 known; etc)

$$
\begin{aligned}
3+x & =2 y \\
x & =y \\
& \psi \\
3+x & =2 x \\
3 & =2 x-x \\
3 & =x
\end{aligned}
$$

Classifying Chemical Reactions [4.2]

Two General Classifications

(1) Ionic
(2) Oxidation-Reduction (REDOX)

IONIC reactions occur between ionic compounds
\hookrightarrow recall, ionic compound is usually a Metal + Nonmetal
\hookrightarrow or another way of putting it: a Type I or Type II compound
REDOX reactions are reactions between covalent compounds
\hookrightarrow reactions between Type III compounds

Double Displacement Reactions

- Also known as a METATHESIS reaction
- Common vernacular is the PARTNER SWAP reaction
- Essentially, cations exchange their associated anions with each other
- Falls under the class of IONIC reactions
\rightarrow lonic Compound = a Metal + a Nometal
\hookrightarrow Ionic Compound = Type I or Type II compound

Predicting ionic reaction products

$$
A \hat{X}+B Y \rightarrow ? ?+? ? \quad A^{2 x} y_{2}^{-}+B X
$$

Given 2 Ionic Reactants: Procedure for Predicting Correct Molecular Equation
(1) Pair (elements)
(2) CHG neutral (compounds on Product-side)
(3) BCE (entire chemical equation)

Three Versions of Ionic Equations (each of which serves a different purpose)
(1) MOLECULAR (or Formula Unit) equation
(2) TOTAL IONIC equation
(3) NET IONIC equation

MOLECULAR >

NET IONIC >

$$
\begin{aligned}
& \mathrm{Pb}^{2+}+2 \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+ \\
& \mathrm{Pb}^{2+}+\mathrm{SO}_{4}^{-} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}
\end{aligned}
$$

Equations for lonic Reactions

RECALL: ionic compounds are typically

- those composed of metals and non-metals (Type I \& II)
- Acids or Bases

Molecular:
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{HNO}_{3}+\mathrm{PbSO}_{4}$
Total lonic: $\mathrm{Pb}^{2+}+2 \mathrm{NO}_{3}{ }^{-}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{NO}_{3}{ }^{-}+\mathrm{PbSO}_{4}(\mathrm{~s})$
Net lonic: $\mathrm{Pb}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})$

SPECTATOR IONS

- cancel-out in Net Ionic
- are neither physically nor chemically changed by the rxn

(EX) Determination of Net Ionic Reaction
¿What is the net ionic equation for the following unbalanced equation?

$$
\mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{rlr}
2 \mathrm{HCl}+{\mathrm{Ca}(\mathrm{OH})_{2}}_{\substack{\times \\
\downarrow}} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \text { Molecular } \\
2 \mathrm{H}^{+}+2 \mathrm{Cl}^{-}+\mathrm{Ca}_{2}^{2+}+2 \mathrm{HO}^{-} & \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \text { Total Ionic } \\
2 \mathrm{H}^{+}+2 \mathrm{HO}^{-} & \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{ll}) & \text { Net lon :c }
\end{array}
$$

Precipitation Reactions

SOLUBLE

- Group 1 cations ($\mathrm{Ll}^{+}-\mathrm{CS}^{+}$)
- ammonium NH_{4}^{+}
- halides $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-} \longrightarrow$ EXCEPT halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
- acetate $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
- bicarbonate HCO_{3}^{-}
- nitrate $\mathrm{NO}_{3}{ }^{-}$
- chlorate ClO_{3}^{-}
- sulfate $\mathrm{SO}_{4}{ }^{2-} \longrightarrow$ EXCEPT sulfates of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+} \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2}$

IN-SOLUBLE \rightarrow EXCEPT in presence of Group 1 cations and Ammonia - carbonate $\mathrm{CO}_{3}{ }^{2-}$

- chromate $\mathrm{CrO}_{4}{ }^{2-}$
- phosphate $\mathrm{PO}_{4}{ }^{3-}$
- sulfide S^{2-}
- hydroxide $\mathrm{OH}^{-} \longrightarrow$ EXCEPT hydroxides of Group 1 cations and Ba^{2+}

Precipitation Reactions and Solubility Rules

- PRECIPITATION RXN - substance reacts to form solid product
- Examples:
\hookrightarrow KIDNEY STONES (several varieties)

$$
\mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \underset{\text { culcalm oxilate }}{\mathrm{CaC}_{2} \mathrm{O}_{4}} \text { K } \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{C}_{2} \mathrm{O}_{4}^{2-}\right]
$$

\rightarrow CORAL REEF: CaCO3 + sea salt + algae for color

- SOLUBILITY / INSOLUBILITY
\hookrightarrow are condition dependent (solube under circumstances, not others)... but...
\longrightarrow often, cast solubility as simply "Yes/No" or "is soluble / is insoluble"

Solubilities of Common Ionic Compounds in Water

Soluble compounds contain - group 1 metal cations ($\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}$, and Cs^{+}) and ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$ - the halide ions $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}\right.$, and $\left.\mathrm{I}^{-}\right)$ - the acetate $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}\right)$, bicarbonate $\left(\mathrm{HCO}_{3}{ }^{-}\right)$, nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, and chlorate $\left(\mathrm{ClO}_{3}{ }^{-}\right)$ions - the sulfate $\left(\mathrm{SO}_{4}{ }^{-}\right)$ion	Exceptions to these solubility rules include - halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and Pb^{2+} - sulfates of $\mathrm{Ag}^{+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, Pb^{2+}, and Sr^{2+}
Insoluble compounds contain - carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$, phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$, and sulfide $\left(\mathrm{S}^{2-}\right)$ ions - hydroxide ion $\left(\mathrm{OH}^{-}\right)$	Exceptions to these insolubility rules include - compounds of these anions with group 1 metal cations and ammonium ion - hydroxides of group 1 metal cations and Ba^{2+}

Table 4.1

10r				
sodium ion	Na^{+}	\checkmark		
potassium ion	K^{+}	\checkmark		
ammonium	NH_{4}^{+}	\checkmark		
nitrate	$\mathrm{NO}_{3}{ }^{-}$	\checkmark		
acetate	AcO^{-}	\checkmark		
halogen ion	$\mathrm{Cl}^{\prime}, \mathrm{Br}^{-} \mathrm{l}^{-}$	\checkmark		salts with... $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
sulfate	$\mathrm{SO}_{4}{ }^{2-}$	\checkmark		salts with... $\mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Hg}^{2+}$
sulfide	S^{2-}		\checkmark	salts with... $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{Mg}_{2}{ }^{+}, \mathrm{Ca}_{2}{ }^{+}$
carbonate	$\mathrm{CO}_{3}{ }^{2-}$		\checkmark	salts with... $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$
phosphate	$\mathrm{PO}_{4}{ }^{3-}$		\checkmark	salts with... $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$
arsenate	$\mathrm{AsO}_{4}{ }^{3-}$		\checkmark	salts with... $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$
oxide	O^{2-}		\checkmark	salts with... Group 1 \& 2 metals
hydroxide	HO		\checkmark	strong bases

(EX) Predict PPT Reactions
¿(a) Which solution could be used to precipitate the barium ion, BaL+, in a water sample: sodium chloride, sodium hydroxide, or sodium sulfate? (b) What is the formula for the expected precipitate?
(i) $\mathrm{Ba}^{2+}+\mathrm{NaCl}_{\mathrm{a}} \rightarrow \mathrm{BaCl}_{2} \longleftarrow$ solute
(ii) $\mathrm{Ba}^{2+}+\mathrm{NaOH} \longrightarrow \mathrm{Ba}_{\mathrm{a}}(\mathrm{OH})_{2} \longleftarrow$ soluble
(iii) $\mathrm{Ba}^{2+}+\mathrm{NaSO}_{4} \rightarrow \mathrm{BaSO}_{4} \leftharpoonup$ precip.taAes

- ACID-BASE REACTION
\rightarrow hydrogen ion (aka proton), H^{+}, is transferred, or
\hookrightarrow hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, is transferred
- ARRHENIUS ACID - donates H^{+}in water
- ARRHENIUS BASE - donates hydroxide ion, OH^{-}(aka HO^{-}), in water

Strong vs. Weak Acids
\rightarrow STRONG ACID - dissociates 100\%
\longrightarrow WEAK ACID - dissociates <100\%

$$
\begin{aligned}
H A & \rightarrow A^{-}+H^{+} \\
\mathrm{BOH} & \rightarrow \mathrm{~B}^{+}+\mathrm{HO}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\mathrm{HCl} & \mathrm{H}^{+}+\mathrm{Cl}^{-} \\
100 & \varnothing & \varnothing \\
\varnothing & 100 \quad 100
\end{array}
\end{aligned}
$$

eg: $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Acid-Base Reaction is a type of Double Displacement

$$
\begin{array}{lrl}
\text { Molecular: } & \mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)^{+}} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \\
\text { Total lonic: } & \mathrm{Ba} a^{2+}+2 \mathrm{HO}^{-}+2 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \rightarrow & 2 \mathrm{H}_{2} \mathrm{O}()^{+} \mathrm{Ba}^{2+}+2 \mathrm{NO}_{3}^{-} \\
\text {Net lonic: } & 2 \mathrm{HO}^{-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Oxidation-Reduction Reactions (buckle up... here's where it starts to get hairy)

Definition: REDOX

- OXIDATION = 个 O.N.
- REDUCTION $=\downarrow$ ON.

OIL $\{$ election flow $(-)$ is opposite the RIG direction of OP(+)
"AGENTS" (facilitates an action): What it is, not what it does

- Oxidizing agent (OXIDANT) = species that causes something else to become oxidized ... it is, itself, reduced.
- Reducing agent (REDUCTANT) = species that causes something else to become reduced... it is, itself, oxidized.

Oxidation Numbers

oxidation number (oxidation state) - charge atom would bear if it were part of an ionic compound.

Rules for Assigning ON's

1. The oxidation number of an atom in an elemental substance is zero.
2. The oxidation number of a monatomic ion is equal to the ion's charge.
3. Oxidation numbers for common nonmetals are usually assigned as follows:

- Hydrogen: +1 when combined with nonmetals, -1 when combined with metals
- Oxygen: -2 in most compounds, sometimes -1 (so-called peroxides, O 2 2-),
very rarely - 1 (so-2 called superoxides, $\mathrm{O} 2-$), positive values when combined with F (values vary)
- Halogens: -1 for F always, -1 for other halogens except when combined with oxygen or other halogens (positive oxidation numbers in these cases, varying values) 4. The sum of oxidation numbers for all atoms in a molecule or polyatomic ion equals the charge on the molecule or ion.

5. GROUP $1=+1$
6. GROUP $2=+2$
7. GROUP 3 = usually +3
8. Transition metals - Type I / Type II rules as guidance
9. Polyatomic lons considered as SINGLE GROUP.
(EX) Assign ON's. [4.5b]
¿Assign oxidation states to the elements whose atoms are underlined in each of the following compounds or ions:
(a)

(C)
(b)

(d)

COMBUSTION REACTION (Redox subclass)

- Reaction of fuel
- ex: hydrocarbon (HC) + oxidant (esp. O_{2})

4 Types of "REDOX questions. (easier to harder)
(1) Is this reaction a redox?
(2) What is oxidized? (or, What is reduced?)
(3) What is oxidizing agent? (or, What is reducing agent?)
(4) How many electrons are transferred
<see example problem next page>
(EX) I.D. Redox Combustion Run Components
¿Consider the formation of a rust from a pure iron, according to the following equation. What is...
(a) the material that is reduced?; (b) the material that is oxidized?; (c) how many electrons were transferred?; (d) the oxidizing agent?; (e) the reducing agent?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

(EX) I.D. Redox Combustion Run Components
¿Consider the formation of a rust from a pure iron, according to the following equation. What is... (a) the material that is reduced?; (b) the material that is oxidized?; (c) how many electrons were transferred?; (d) the oxidizing agent?; (e) the reducing agent?

TIP: any reaction which forms a compound from an element (or vice versa) is necessarily a REDOX reaction

Single-Displacement (Replacement) Reaction: another REDOX subclass:
\longrightarrow only 1 moitey displaced
\hookrightarrow especially common reactions with METALS

Balancing Redox Reactions via the Half-Reaction Method

$$
\text { (page } 189 / 196 \text {) }
$$

<'BALANCING REDOX EQUATIONS' NOT COVERED ON THIS EXAM>
Notes-Part Ka"

Reaction Stoichiometry [4.3]

Review from Last Chapter

(EX) 'gram-to-gram' Stoichiometry Problem
¿ For the synthesis of water from hydrogen and oxygen, how many grams of hydrogen are required to react with 128 g of oxygen,?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2}->
$$

Hin $\mathrm{gH}_{2}=\frac{128 \mathrm{gO}}{2} \cdot \frac{1 \mathrm{molO}_{2}}{32 \mathrm{gO}_{2}} \cdot \frac{2 \mathrm{molH}_{2}}{1 \mathrm{molO}_{2}} \cdot \frac{2 \mathrm{gH}_{2}}{1 \mathrm{molH}_{2}}=16 \mathrm{gH}_{2}$
($\mathrm{gH}_{2} \mathrm{O}=\frac{128 \mathrm{gO}_{2}}{} \cdot \frac{1 \mathrm{molO}_{2}}{32 \mathrm{gO}} \cdot \frac{2 \mathrm{molH}_{2} \mathrm{O}}{1 \mathrm{molO}_{2}} \cdot \frac{18 \mathrm{gH}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}=144 \mathrm{gH}_{2} \mathrm{O}$

(EX) $g(a) \rightarrow g(b) \quad$ [4.11b]
¿What mas of CO is required to react with 25.13 g Fe 2 O 3 according to the equation:

DA
25.13 g
$\square \mathrm{g}$

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

(EX) ga) $->\mathrm{g}(\mathrm{b})$
[4.11b]
¿What mass of SO2 contains the same mass of oxygen as is contained in 33.7 g of As 2O5?

$? \frac{\mathrm{~g} \cdot \mathrm{SO}_{2}}{}=\frac{33.7 \mathrm{~g} \cdot A s_{2} \mathrm{O}_{5}}{1} \cdot \frac{1 \mathrm{~mol} \cdot \mathrm{As}_{2} \mathrm{O}_{5}}{229.8 \mathrm{~g} \cdot \mathrm{As}_{2} \mathrm{O}_{5}} \cdot \frac{5 \mathrm{~mol} \cdot \mathrm{O}}{1 \mathrm{~mol} \cdot \mathrm{As}_{2} \mathrm{O}_{5}} \cdot \frac{1 \mathrm{~mol} \cdot \mathrm{SO}_{2}}{2 \mathrm{~mol} \cdot \mathrm{O}} \cdot \frac{64.1 \mathrm{~g} \cdot \mathrm{SO}_{2}}{1 \mathrm{~mol} \cdot \mathrm{SO}_{2}}=23.5 \mathrm{~g} \cdot \mathrm{~S}^{\prime}$

Limiting Reactant

$$
\begin{gathered}
2 \text { bread } \\
14
\end{gathered}+\underset{4}{1 \text { meat } \rightarrow} \begin{gathered}
1 \text { sandwich } \\
? ? ? \\
7
\end{gathered}
$$

CLAIM: with 14 slices of bread and 4 slices of meat, I can make 7 sandwiches

ARGUMENT:

$$
? ? \text { sand }=\frac{14 \text { bread }}{1 \text { sandwich }} \frac{2 \text { bread }}{2 \text { sandwiches }}
$$

COUNTER
ARGUMENT: $\quad ? ?$ sand $=\frac{4 \text { meat }}{1 \text { sandwich }} \frac{1 \text { meat }}{1 \text { sandwiches }}$
ANSWER: cannot make more product than the material in least supply (Limiting Reagent) will allow.

(EX) ID Limiting Reagent

$$
\begin{array}{lc}
38.0 \mathrm{~g} & 225 \mathrm{~g} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow> & \square \mathrm{g} \\
2 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

$$
? ? \mathrm{gW}=\frac{38.0 \mathrm{gH}}{2} \cdot \frac{1 \mathrm{molH}_{2}}{2.02 \mathrm{gH}_{2}} \cdot \frac{2 \mathrm{molH}_{2} \mathrm{O}}{2 \mathrm{molH}_{2}} \cdot \frac{18.0 \mathrm{gH}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}=339 \mathrm{gH}_{2} \mathrm{O}
$$

$$
? ? \mathrm{gW}=\frac{225 \mathrm{gO}_{2}}{} \cdot \frac{1 \mathrm{molO}_{2}}{32.00 \mathrm{gO}_{2}} \cdot \frac{2 \mathrm{molH}_{2} \mathrm{O}}{1 \mathrm{molO}_{2}} \cdot \frac{18.0 \mathrm{gH}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}=253 \mathrm{gH}_{2} \mathrm{O} \quad \text { LIIITING }
$$

(EX) Calculate Excess of Excess Reagent
¿EXCESS: back-catculate to find the am. of Excess Reagent needed to make the lesser amt of product, then subtract/from the amt. of Excess Reagent available at the start?

Buck -C

$? ? \mathrm{gH}_{2}=\frac{253 \mathrm{gH}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}} 18.0 \mathrm{gH}_{2} \mathrm{O} \cdot \frac{2 \mathrm{molH}_{2}}{2 \mathrm{molH}_{2} \mathrm{O}} \cdot \frac{2.02 \mathrm{gH}_{2}}{1 \mathrm{molH}_{2}}=28.4 \mathrm{gH}_{2}$ dit
?? $\mathrm{g} \mathrm{H}_{2}($ excess $)=38.0-28.4=9.6 \mathrm{gH}$

$$
\text { \%Yield }=\frac{\text { actual } \text { (} \text { measured })}{\text { theoretical }(\text { calculated })} \stackrel{100}{\leftarrow} \text { So.dintic calc }
$$

(EX) Calculate \% Yield from grams of reactant ¿What is the \% yield of a rxn that produces 12.5 g of the gas Freon from 32.9 g of CCI4 in excess HF?
<see answer next page>

LECTURE STOP

(EX) Calculate \% Yield from grams of reactant ¿What is the \% yield of a rxn that produces 12.5 g of the gas Freon from 32.9 g of CCI4 in excess HF?

$$
25.9_{2} \text { (ther) }
$$

$$
32.9 \mathrm{~g} \quad \text { excess } \quad 12.5 \mathrm{~g} \text { (measured) }
$$

$$
\mathrm{CCl}_{4}+2 \mathrm{HF} \rightarrow \mathrm{CF}_{2} \mathrm{Cl}_{2}+2 \mathrm{HCL}
$$

(1) $\%$ Yield $=\frac{12.5 \mathrm{~g}}{\text { ??? theoretical }} \cdot 100$
(2) ${ }^{2} ? g_{\mathrm{CF}_{2} \mathrm{Cl}_{2}}=\frac{32.9 \mathrm{gCCl}}{4} \cdot \frac{1 \mathrm{molCCl}_{4}}{153.82 g \mathrm{gCl}_{4}} \cdot \frac{1 \mathrm{molCF}_{2} \mathrm{Cl}_{2}}{1 \mathrm{molCl}_{4}} \cdot \frac{120.91 \mathrm{gCF} \mathrm{Cl}_{2}}{1 \mathrm{molCF}_{2} \mathrm{Cl}_{2}}=25.9 \mathrm{gCF}_{2} \mathrm{Cl}_{2}$
(3) $\%$ Yield $=\frac{12.5 g}{25.9 g} \cdot 100=48.3 \%$

(EX) Calculate \% Yield from given amount of product
¿If you ran this reaction with 128 g of oxygen, but you only recovered 105 g of water, how well did you do?

$$
\left.\begin{array}{c}
\begin{array}{c}
16.0 \mathrm{~g} \quad 128 \mathrm{~g} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow
\end{array} \begin{array}{c}
105 \mathrm{~g} \\
144 \mathrm{~g}
\end{array} \\
2 \mathrm{H}_{2} \mathrm{O}
\end{array}\right] \begin{gathered}
\text { part } \\
\text { \% Yield }=\frac{105}{\text { whole }} \cdot 100=0.6935 \cdot 100=69.3 \% \\
144
\end{gathered} 100=0 .
$$

QUANTITATIVE ANALYSIS - det' n of amt of material present.
(1) Titration,
(2) Gravimetric, \&
(3) Combustion

Titration

DESCRIPTION: a known amount of Titrant (known conc) is added to a known amount of Analyte (unknown conc) until th Equivalence Point (point at which the amount of Titrant and Analyse are equal, per Indicator at the End Point).

Figure 1: Titration Setup

$$
M_{A} V_{A}=M_{B} V_{B}
$$

(EX) Calculate Molarity and g(Titrant used)
¿ 50.0 mL of HCl is titrated to the equivalence point with 23.4 mL of 0.216 M NaOH . What is the molarity of the HCl solution?

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
\mathrm{M} \cdot \mathrm{~V} & =\mathrm{M}^{\prime} \cdot \mathrm{V}^{\prime} \\
50.0 \cdot \mathrm{X} & =23.4 \cdot 0.216 \\
\mathrm{X} & =0.101 \mathrm{M}
\end{aligned}
$$

(b) ¿How many grams of HCl were in the titrated sample?
$\begin{array}{ll}50.0 \mathrm{~mL} & 23.4 \mathrm{~mL} \\ & 0.216 \mathrm{~mol} / \mathrm{L}\end{array}$
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

$$
? ? g_{a}=\frac{23.4 m L_{b}}{0.216 \mathrm{~mol}_{b}} \cdot \frac{1 \mathrm{~mol}_{a}}{1000 m L_{b}} \cdot \frac{36.46 g_{a}}{1 m o l_{b}}=0.184 g_{a}
$$

Gravimetric Analysis

\hookrightarrow based on CHANGE IN MASS (which affects the pull of Gravity)
\hookrightarrow ex: dehydration
WATER LOSS = mass(before) - mass(after)

(a) $? \frac{g_{C I}}{1}=\frac{1.0881 g_{A g C l}}{1} \cdot \frac{1 \mathrm{~mol}_{A g C l}}{143.32 g_{A g C l}} \cdot \frac{1 \mathrm{~mol}_{c r}}{1 \mathrm{~mol}_{A g C l}} \cdot \frac{35.45 g_{c r}}{1 \mathrm{~mol}_{c r}}=0.2691 g_{c r}$
(b) $\% \mathrm{Cl}=\frac{0.2691 \mathrm{~g}}{1.1324} \cdot 100=23.76 \%$

Combustion Analysis

- Oxidizes hydrocarbon (reacts with O 2) to blast material into pieces, then in captures those H 2 O and CO2 pieces.
$\rightarrow \mathrm{H} 2 \mathrm{O}$ gives measure of H
$\hookrightarrow \mathrm{CO2}$ given measure of C

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

(EX) Calculate Emp. Formula from Combustion Data [4.16b] ¿A 0.00215-g sample of polystyrene, a polymer composed of carbon and hydrogen, produced 0.00726 g of CO 2 and 0.00148 g of H 2 O in a combustion analysis. What is the empirical formula for polystyrene?

$$
\mathrm{C}_{x} \mathrm{H}_{y} \leftarrow \text { TARGET }
$$

(ii) $\square \mathrm{mol} H=$| $0.00148 \mathrm{~g} \omega$ | $1 \mathrm{~mol} \omega$ | $2 \mathrm{~mol} H$ |
| :--- | :--- | :--- |
| | $18.02 \mathrm{~g} \omega$ | $1 \mathrm{~mol} \omega$ |$=1.64 \varepsilon-4 \mathrm{mdl} \mathrm{H}$

(iii) $C_{x} H_{y} \Rightarrow C_{\frac{1.65 \varepsilon-4}{1.64 \varepsilon-4}} H_{\frac{1.64 \varepsilon-4}{1.64 \varepsilon-4}} \Rightarrow C_{1} H_{1} \Rightarrow C H$

