

CHAPTER 6 INTRO TO CHEMICAL REACTIONS

Writing and Balancing Chemical Equations [4.1]

¿WHY BALANCE CHEMICAL EQUATIONS?

 $2 H_2 + O_2 -> 2 H_2 O$

HOW TO BALANCE CHEMICAL EQUATIONS: THE TWIN ELEMENTS METHOD

- 1. ID "lone" elements (pure elements that are all "alone")
- 2. ID "twin" elements (element whose symbol appears once-and-only-once on

each side of the equation. One of the twins lives on

the reactant-side, the other on the product-side)

3a. START with the Twin Element with the largest subscript.

3b. END by determining the coefficient of a Lone Element, if present.

4. Exploit opportunities to employ two tricks of the trade:

(i) cross-multiplication

(ii) fractionations

(see "DrStephensonChemistry" youtube videos)

$$CH_4 + O_2 \rightarrow H_2O$$

FIRST-ORDER BCE FLOW DIAGRAM

'ONE-SHORT' situation (2 or 3 known; 3 of 4 known; etc)

IONIC reactions occur between ionic compounds

→ recall, ionic compound is usually a Metal + Nonmetal

→ or another way of putting it: a Type I or Type II compound

REDOX reactions are reactions between covalent compounds

ightarrow reactions between Type III compounds

Double Displacement Reactions

- Also known as a METATHESIS reaction
- Common vernacular is the PARTNER SWAP reaction
- · Essentially, cations exchange their associated anions with each other
- · Falls under the class of IONIC reactions
 - \rightarrow Ionic Compound = a Metal + a Nometal

└→ Ionic Compound = Type I or Type II compound

Predicting ionic reaction products

$$\overrightarrow{AX + BY} \rightarrow ?? + ??$$

$$AY + BX$$

Given 2 Ionic Reactants: Procedure for Predicting Correct Molecular Equation

(1) Pair (elements)
 (2) CHG neutral (compounds on Product-side)
 (3) BCE (entire chemical equation)

Three Versions of Ionic Equations (each of which serves a different purpose)

Equations for Ionic Reactions

RECALL: ionic compounds are typically • those composed of metals and non-metals • Acids or Bases	Reactants given1. PAIR _2. CHG NEUTRAL _3. BCE Molecular _3. BCE Molecular _Equation break compounds into ions (or not), based on Solubility Table Total Ionic Equation PECTATOR Net Ionic Equation Ret Ionic Equation Ret Ionic Equation Ret Ionic Ret Ionic Ret Ionic Ret Ionic Ret Ionic Ret Ionic Ret Ionic Ret Ionic
Molecular: Pb(NO ₃) ₂ + H ₂ SO ₄	\rightarrow 2 HNO ₃ + PbSO ₄
Total Ionic: Pb ²⁺ + 2NO ₃ ⁻ + 2H ⁺ + SO ₄ ²⁻	\rightarrow 2H ⁺ + 2NO ₃ ⁻ + PbSO ₄ (s)
Net Ionic: Pb ²⁺ + SO ₄ ²⁻ SPECTATOR IONS • cancel-out in Net Ionic • are neither physically nor chemically	→ $PbSO_4(s)$ changed by the rxn $Does DoT$ disassociate

Additional Information in Chemical Equations

Phase Changes:	(5)	(لا)	(g)	(ag)
			vs,	

(EX) Determination of Net Ionic Reaction

¿What is the net ionic equation for the following unbalanced equation?

 $HCI + Ca(OH)_2 \rightarrow CaCI_2 + H_2O$

$$2 H (l + Ca(0H)_{2} \rightarrow Ca(l_{2} + 2H_{2}0) \qquad Molecular$$

$$2H^{4} + 2Ce^{-} + Ca^{2+} + 2Ho^{-} \rightarrow Ca^{2+} + 2Ce^{-} + 2H_{2}O(g) \qquad Total \ lowc$$

$$\frac{1}{2H^{4}} + 2Ho^{-} \rightarrow 2H_{2}O(k) \qquad Net \ lowc$$

Precipitation Reactions

SOLUBLE • Group 1 cations (LI⁺ – CS⁺) • ammonium NH₄+ halides Cl⁻, Br⁻, I⁻ -> EXCEPT halides of Ag⁺, Hg₂²⁺, Pb²⁺ acetate C₂H₃O₂⁻ bicarbonate HCO₃⁻ nitrate NO₃⁻ • chlorate CIO₃sulfate SO₄²⁻ --> EXCEPT sulfates of Ag⁺, Hg₂²⁺, Pb²⁺ Ba²⁺, Ca²⁺, Sr² • IN-SOLUBLE -> EXCEPT in presence of Group 1 cations and Ammonia carbonate CO32-٠ chromate CrO₄²⁻ •

- phosphate PO₄³⁻
- sulfide S²⁻
- hydroxide OH⁻ --> EXCEPT hydroxides of Group 1 cations and Ba²⁺

- PRECIPITATION RXN substance reacts to form solid product
- Examples:

└→ KIDNEY STONES (several varieties)

└→ CORAL REEF: CaCO3 + sea salt + algae for color

SOLUBILITY / INSOLUBILITY

→ are condition dependent (solube under circumstances, not others)... but...

→ often, cast solubility as simply "Yes/No" or "is soluble / is insoluble"

 Soluble compounds contain group 1 metal cations (Li⁺, Na⁺, K⁺, Rb⁺, and Cs⁺) and ammonium ion (NH₄ ⁺) the halide ions (Cl⁻, Br⁻, and l⁻) the acetate (C₂H₃O₂⁻), bicarbonate (HCO₃⁻), nitrate (NO₃⁻), and chlorate (ClO₃⁻) ions the sulfate (SO₄⁻) ion 	 Exceptions to these solubility rules include halides of Ag⁺, Hg₂²⁺, and Pb²⁺ sulfates of Ag⁺, Ba²⁺, Ca²⁺, Hg₂²⁺, Pb²⁺, and Sr²⁺ 	
Insoluble compounds contain • carbonate (CO ₃ ²⁻), chromate (CrO ₄ ²⁻), phosphate (PO ₄ ³⁻), and sulfide (S ²⁻) ions • hydroxide ion (OH ⁻)	 Exceptions to these insolubility rules include compounds of these anions with group 1 metal cations and ammonium ion hydroxides of group 1 metal cations and Ba²⁺ 	

Table 4.1

		23	multa	JUDIE US	oune Exceptions
	101	ION	S	JUL US	¢t ^{ce}
1	sodium ion	Na⁺	~		
2	potassium ion	K⁺	~		
3	ammonium	NH_4^+	✓		
4	nitrate	NO ₃ ⁻	✓		
5	acetate	AcO ⁻	✓		
6	halogen ion	Cl ⁻ , Br ⁻ , l ⁻	~		salts with Ag*, Hg ₂ ²⁺ , Pb ²⁺
7	sulfate	SO42-	~		salts with Ba ²⁺ ,Ca ²⁺ , Pb ²⁺ , Hg ²⁺
8	sulfide	S ²⁻		✓	salts with Na ⁺ , K ⁺ , NH ₄ ⁺ , Mg ₂ ⁺ ,Ca ₂ ⁺
9	carbonate	CO32-		✓	salts with Na⁺, K⁺, NH₄⁺
10	phosphate	PO4 ³⁻		✓	salts with Na⁺, K⁺, NH₄⁺
11	arsenate	AsO4 ³⁻		✓	salts with Na*, K*, NH₄*
12	oxide	O ²⁻		✓	salts with Group 1 & 2 metals
13	hydroxide	HO ⁻		√	strong bases

(EX) Predict PPT Reactions

¿(a) Which solution could be used to precipitate the barium ion, Ba2+, in a water sample: sodium chloride, sodium hydroxide, or sodium sulfate? (b) What is the formula for the expected precipitate?

Acid-Base Reactions

- ACID-BASE REACTION \rightarrow hydrogen ion (aka proton), H⁺, is transferred, or \rightarrow hydronium ion, H₃O⁺, is transferred
- ARRHENIUS ACID donates H⁺ in water
- ARRHENIUS BASE donates hydroxide ion,OH⁻ (aka HO⁻), in water

Strong vs. Weak Acids

→ STRONG ACID – dissociates 100% → WEAK ACID – dissociates <100%

		04				
Strong						
	HA	\rightarrow	H+	+	A-	
1:	100		0		0	
E:	0		100		100	
Weak						
	HA	\rightarrow	H⁺	+	A-	
1:	100		0		0	
E:	95		5		5	

8 STRONG BASES Hydroxides of ... 1 Li ② Na 3 K ④ Rb 5 Cs 6 Ba ⑦ Sr 8 Ca

	7 S	TRONG ACIDS
	1	HNO ₃
	2	H_2SO_4
	3	HCIO ₄
/	4	HCIO ₃
	(5)	HCI
	6	HI
	7	HBr

$$\begin{array}{cccc} \mathsf{L}\mathsf{A} & \longrightarrow & \mathsf{A}^- & + & \mathsf{H}^+ \\ \mathsf{B}\mathsf{o}\mathsf{H} & \longrightarrow & \mathsf{B}^+ & + & \mathsf{H}\mathsf{b}^- \end{array}$$

HO-

eg: HCI + NaOH \rightarrow NaCI + H₂O

Acid-Base Reaction is a type of Double Displacement

Molecular:	() 2 5	$2H_2O_{(1)}$ $+$ $Ba(NO_3)_2$
Total Ionic:	Ba ²⁺ + 2HO ⁻ + 2H ⁺ + 2NØ ₃ ⁻ →	2H ₂ O ₁ Ba ²⁺ + 2NO ₃ -
Net Ionic:	2HO ⁻ + 2H ⁺ →	

Oxidation-Reduction Reactions (buckle up... here's where it starts to get hairy)

- OXIDATION = 1 O.N.
- REDUCTION = \downarrow O.N.
- OIL (e RIG S d

electron flow (-) is opposite the direction of ON (+)

KIG J direction

• Oxidizing agent (OXIDANT) = species that causes something else to become oxidized ... it is, itself, reduced.

• Reducing agent (REDUCTANT) = species that causes something else to become reduced... it is, itself, oxidized.

Oxidation Numbers

oxidation number (oxidation state) — charge atom would bear if it were part of an ionic compound.

Rules for Assigning ON's

- 1. The oxidation number of an atom in an elemental substance is zero.
- 2. The oxidation number of a monatomic ion is equal to the ion's charge.
- 3. Oxidation numbers for common nonmetals are usually assigned as follows:
 - Hydrogen: +1 when combined with nonmetals, -1 when combined with metals
 - Oxygen: -2 in most compounds, sometimes -1 (so-called peroxides, O 2 2-),
- very rarely 1 (so-2 called superoxides, O 2), positive values when combined with F (values vary)

• Halogens: -1 for F always, -1 for other halogens except when combined with oxygen or other halogens (positive oxidation numbers in these cases, varying values) 4. The sum of oxidation numbers for all atoms in a molecule or polyatomic ion equals the charge on the molecule or ion.

- 5. GROUP 1 = +1
- 6. GROUP 2 = +2
- 7. GROUP 3 =usually +3
- 8. Transition metals Type I / Type II rules as guidance
- 9. Polyatomic lons considered as SINGLE GROUP.

(EX) Assign ON's. [4.5b]

¿Assign oxidation states to the elements whose atoms are underlined in each of the following compounds or ions:

COMBUSTION REACTION (Redox subclass)

- Reaction of fuel
- ex: hydrocarbon (HC) + oxidant (esp. O₂)
- 4 Types of "REDOX questions. (easier to harder)
 - (1) Is this reaction a redox?
 - (2) What is oxidized? (or, What is reduced?)
 - (3) What is oxidizing agent? (or, What is reducing agent?)
 - (4) How many electrons are transferred

<see example problem next page>

(EX) I.D. Redox Combustion Rxn Components

¿Consider the formation of a rust from a pure iron, according to the following equation. What is... (a) the material that is reduced?; (b) the material that is oxidized?; (c) how many electrons were transferred?; (d) the oxidizing agent?; (e) the reducing agent?

(EX) I.D. Redox Combustion Rxn Components

¿Consider the formation of a rust from a pure iron, according to the following equation. What is... (a) the material that is reduced?; (b) the material that is oxidized?; (c) how many electrons were transferred?; (d) the oxidizing agent?; (e) the reducing agent?

TIP: any reaction which forms a compound from an element (or vice versa) is necessarily a REDOX reaction

Single-Displacement (Replacement) Reaction: another REDOX subclass:

- \hookrightarrow only 1 moitey displaced
- → especially common reactions with METALS

$$Zn + 2(HC) \rightarrow ZnCl_2 + H_2^{\uparrow}$$

 $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$

Balancing Redox Reactions via the Half-Reaction Method

(page 189/196)

<'BALANCING REDOX EQUATIONS' NOT COVERED ON THIS EXAM>

Notes-Part Far

Review from Last Chapter

(EX) 'gram-to-gram' Stoichiometry Problem

¿For the synthesis of water from hydrogen and oxygen, how many grams of hydrogen are required to react with 128 g of oxygen, ?

(EX) $g(a) \rightarrow g(b)$ [4.11b] ¿What mass of SO2 contains the same mass of oxygen as is contained in 33.7 g of As2O5?

🗌 g

 $? \frac{g \cdot SO_2}{1} = \frac{33.7 \ g \cdot As_2O_5}{1} \bullet \frac{1 \ mol \cdot As_2O_5}{229.8 \ g \cdot As_2O_5} \bullet \frac{5 \ mol \cdot O}{1 \ mol \cdot As_2O_5} \bullet \frac{1 \ mol \cdot SO_2}{2 \ mol \cdot O} \bullet \frac{64.1 \ g \cdot SO_2}{1 \ mol \cdot SO_2} = 23.5 \ g \cdot S'$

Limiting Reactant

ARGUMENT:

CLAIM: with 14 slices of bread and 4 slices of meat, I can make 7 sandwiches

?? sand = $\frac{14 \text{ bread}}{2 \text{ bread}} \cdot \frac{1 \text{ sandwich}}{2 \text{ bread}} = 7 \text{ sandwiches}$ **ARGUMENT:** $??sand = \frac{4 \text{ meat}}{1 \text{ meat}} \cdot \frac{1 \text{ sandwich}}{1 \text{ meat}} = 4 \text{ sandwiches}$ COUNTER

ANSWER: cannot make more product than the material in least supply (Limiting Reagent) will allow.

(EX) ID Limiting Reagent

 $2H_2 + O_2 \rightarrow 2H_2O$

 $\begin{aligned} ??gW &= \frac{38.0gH_2}{2.02gH_2} \cdot \frac{1molH_2}{2.02gH_2} \cdot \frac{2molH_2O}{2molH_2} \cdot \frac{18.0gH_2O}{1molH_2O} = 339gH_2O \\ ??gW &= \frac{225gO_2}{32.00gO_2} \cdot \frac{1molO_2}{32.00gO_2} \cdot \frac{2molH_2O}{1molO_2} \cdot \frac{18.0gH_2O}{1molH_2O} = 253gH_2O \end{aligned}$

(EX) Calculate Excess of Excess Reagent

¿EXCESS: back-calculate to find the am. of Excess Reagent needed to make the lesser amt of product, then subtract from the amt. of Excess Reagent available at the start?

$$??gH_2 = \frac{253gH_2O}{18.0gH_2O} \cdot \frac{1molH_2O}{18.0gH_2O} \cdot \frac{2molH_2}{2molH_2O} \cdot \frac{2.02gH_2}{1molH_2} = 28.4gH_2$$

 $??gH_2(excess) = 38.0 - 28.4 = 9.6gH_2$

(EX) Calculate % Yield from grams of reactant

Percent Yield

¿What is the % yield of a rxn that produces 12.5 g of the gas Freon from 32.9 g of CCl4 in excess HF?

LECTURE STOP

(EX) Calculate % Yield from grams of reactant

¿What is the % yield of a rxn that produces 12.5 g of the gas Freon from 32.9 g of CCl4 in excess HF?

(3) %*Yield* =
$$\frac{12.5g}{25.9g} \cdot 100 = 48.3\%$$

(EX) Calculate % Yield from given amount of product ¿If you ran this reaction with 128 g of oxygen, but you only recovered 105 g of water, how well did you do?

$$105 \text{ g}$$

$$16.0 \text{ g} \quad 128 \text{ g} \quad 144 \text{ g}$$

$$2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O}$$

$$\% \ Yield = \frac{part}{whole} \cdot 100 = \frac{105}{144} \cdot 100 = 0.6935 \cdot 100 = 69.3 \ \%$$

 $M_{A}V_{A} = M_{B}V_{B}$

(EX) Calculate Molarity and g(Titrant used) ¿50.0 mL of HCl is titrated to the equivalence point with 23.4 mL of 0.216 M NaOH. What is the molarity of the HCl solution?

HCI + NaOH → NaCI + H₂O 23mLG $0.216M_{P}$ $(M \cdot V = M' \cdot V')$ $50.0 \cdot X = 23.4 \cdot 0.216$ X = 0.101 M MA

p.2 lord 29/uch

• HINT: For "calc g" problems, use DA/mapping

$$??g_a = \frac{23.4mL_b}{1000mL_b} \cdot \frac{0.216 \ mol_b}{1000mL_b} \cdot \frac{1 \ mol_a}{1 \ mol_b} \cdot \frac{36.46g_a}{1 \ mol_a} = 0.184g_a$$

Gravimetric Analysis

→ based on CHANGE IN MASS (which affects the pull of Gravity)

 \hookrightarrow ex: dehydration

WATER LOSS = mass(before) - mass(after)

(EX) Gravimetric Analysis: Calc Amount of Reactant Based on Product Precipitate [4.15b] ¿What is the % of chloride ion in a sample if 1.1324 g of the sample precipitates 1.0881 g of AgCl when treated with excess Ag+?

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

$$\textcircled{\textbf{A}} \qquad ? \frac{g_{Cl^{-}}}{1} = \frac{1.0881 \, g_{AgCl}}{1} \bullet \frac{1 \, mol_{AgCl}}{143.32 \, g_{AgCl}} \bullet \frac{1 \, mol_{cl^{-}}}{1 \, mol_{AgCl}} \bullet \frac{35.45 \, g_{Cl^{-}}}{1 \, mol_{cl^{-}}} = 0.2691 \, g_{Cl^{-}}$$

$$\textcircled{b} \qquad \% \ Cl = \frac{0.2691g}{1.1324} \cdot 100 = 23.76 \ \%$$

Combustion Analysis

• Oxidizes hydrocarbon (reacts with O2) to blast material into pieces, then in captures those H2O and CO2 pieces.

- → H2O gives measure of H
- \hookrightarrow CO2 given measure of C

(EX) Calculate Emp. Formula from Combustion Data [4.16b]

¿A 0.00215-g sample of polystyrene, a polymer composed of carbon and hydrogen, produced 0.00726 g of CO2 and 0.00148 g of H2O in a combustion analysis. What is the empirical formula for polystyrene?

$$(iii) C_{X}H_{y} \Rightarrow C_{\underline{1.65} \underline{c}-\underline{4}} H_{\underline{1.64} \underline{c}-\underline{4}} \Rightarrow C_{1}H_{1} \Rightarrow CH$$