> CHAPTER 5 THERMOCHEMISTRY

TABLES
~Bond Energy
~Bond Length

Bond Energies (kJ/mol)					
Bond	Bond Energy	Bond	Bond Energy	Bond	Bond Energy
H-H	436	C-S	260	$\mathrm{F}-\mathrm{Cl}$	255
$\mathrm{H}-\mathrm{C}$	415	$\mathrm{C}-\mathrm{Cl}$	330	$\mathrm{F}-\mathrm{Br}$	235
H-N	390	$\mathrm{C}-\mathrm{Br}$	275	$\mathrm{Si}-\mathrm{Si}$	230
H-O	464	C-I	240	Si-P	215
H-F	569	$\mathrm{N}-\mathrm{N}$	160	Si-S	225
H-Si	395	$\mathrm{N}=\mathrm{N}$	418	$\mathrm{Si}-\mathrm{Cl}$	359
H-P	320	$\mathrm{N} \equiv \mathrm{N}$	946	$\mathrm{Si}-\mathrm{Br}$	290

Table 7.2

Bond	Bond Energy	Bond	Bond Energy	Bond	Bond Energy
H-S	340	$\mathrm{N}-\mathrm{O}$	200	Si-I	215
$\mathrm{H}-\mathrm{Cl}$	432	N-F	270	P-P	215
$\mathrm{H}-\mathrm{Br}$	370	$\mathrm{N}-\mathrm{P}$	210	P-S	230
H-I	295	$\mathrm{N}-\mathrm{Cl}$	200	$\mathrm{P}-\mathrm{Cl}$	330
C-C	345	$\mathrm{N}-\mathrm{Br}$	245	$\mathrm{P}-\mathrm{Br}$	270
$\mathrm{C}=\mathrm{C}$	611	$\mathrm{O}-\mathrm{O}$	140	P-I	215
$\mathrm{C} \equiv \mathrm{C}$	837	$\mathrm{O}=\mathrm{O}$	498	S-S	215
$\mathrm{C}-\mathrm{N}$	290	O-F	160	S-Cl	250
$\mathrm{C}=\mathrm{N}$	615	O-Si	370	$\mathrm{S}-\mathrm{Br}$	215
$\mathrm{C} \equiv \mathrm{N}$	891	O-P	350	$\mathrm{Cl}-\mathrm{Cl}$	243
$\mathrm{C}-\mathrm{O}$	350	$\mathrm{O}-\mathrm{Cl}$	205	$\mathrm{C} 1-\mathrm{Br}$	220
$\mathrm{C}=\mathrm{O}$	741	O-I	200	$\mathrm{Cl}-\mathrm{l}$	210
$\mathrm{C} \equiv \mathrm{O}$	1080	F-F	160	$\mathrm{Br}-\mathrm{Br}$	190
C-F	439	F-Si	540	$\mathrm{Br}-\mathrm{I}$	180
$\mathrm{C}-\mathrm{Si}$	360	F-P	489	-1	150
C-P	265	F-S	285		

Table 7.2

CHAPTER 5 THERMOCHEMISTRY

Energy Basics [5.1]

- Thermochemistry -- aka Chemical Thermodynamics -- heat \& energy flow
- Chemistry is the study of matter: it's properties, interactions, reactions, and ENERGY CHANGES.
- $\Delta \mathrm{E}$ occurs with almost every chemical, physical, or nuclear change

Energy

KE: from VRT - temperature
PE: from IMF [5.3] - attraction/repulsion

$\begin{aligned} E & =q+w \\ \text { energy } & =\text { heat }+ \text { work } \end{aligned}$	TWO TYPES - Kinetic - motion - Potential - position

$1^{\text {st }}$ LAW (Conservations of Energy) - in a chemical reaction or physical change, energy can be neither created nor destroyed.

Thermal Energy, Temperature, and Heat

THERMAL ENERGY MANEFESTS as three types of molecular/atomic motion:
(1) Vibrational
(2) Rotational
(3) Translational

RELATIONSHIP: TEMPERATURE AND MOTION
$\rightarrow T_{\propto}$ amount of motions $n+m$ more motion $=$ higher temp
$\rightarrow \mathrm{T}_{\propto} \mathrm{KE}($ AVERAGE)

RELATIONSHIP: MATTER AND MOTION

- Gas - motion such that molecules cannot interact
- Liquid - motion such that molecules can interact somewhat
- solid - motion such that molecules interact significantly

KE (VRT)

PE (bonding)

\downarrow ASIDE \downarrow

SpCCITML IXAAX

Temperature is not directly proportional to internal energy since temperature measures only the kinetic energy part of the internal energy, so two objects with the same temperature do not in general have the same internal energy

http://chemsite.Isrhs.net/chemKinetics/PotentialEnergy.html

Chemical Potential Energy
A chemical bond can be thought of as an attractive force between atoms.
Because of this, atoms and molecules can have chemical potential energy.
Anytime two atoms form a strong covalent or ionic bond or two molecules form a weak van der Waals bond, chemical energy is converted into other forms of energy, usually in the form of heat and light.
-> The amount of energy in a bond is somewhat counterintuitive - the stronger or more stable the bond, the less chemical energy there is between the bonded atoms.

Strong bonds have low chemical energy and weak bonds have high chemical energy
Lot's of heat and/or light energy is released when very strong bonds form, because much of the chemical energy is converted to heat and/or light energy. The reverse is true for breaking chemical bonds. It takes more energy to break a strong bond than a weak bond. The breaking of a bond requires the absorption of heat and/or light energy which is converted into chemical energy when the bond is broken.
See an example below of how a chemical reaction converts chemical energy into heat and light energy:

Simplified Chemical Energy Graph

http://chemsite.Isrhs.net/chemKinetics/PotentialEnergy.html

http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/firlaw.html\#c1

An increase in the enthalpy $\mathrm{H}=\mathrm{U}+\mathrm{PV}$ might be associated with an increase in internal energy which could be measured by calorimetry, or with work done by the system, or a combination of the two.

The internal energy U might be thought of as the energy required to create a system in the absence of changes in temperature or volume.

But if the process changes the volume, as in a chemical reaction which produces a gaseous product, then work must be done to produce the change in volume. For a constant pressure process the work you must do to produce a volume change ΔV is $P \Delta V$. Then the term PV can be interpreted as the work you must do to "create room" for the system if you presume it started at zero volume.

Heat

- HEAT (q), or heat flow, is the transfer of thermal energy between two bodies at different temperatures.

- THERMAL EQUILIBRIUM -- both substances are at the same temperature, and their molecules have the same average kinetic energy.

@ equal: KE(object 1) $=\mathrm{KE}($ object 1)

ENDO vs. EXO

Units of Measure
\Rightarrow A calorie is the amount of energy required to raise one gram of water by 1 degree C (1 kelvin).
\gg The Calorie (with a capital C), is commonly used in quantifying food energy content, \longrightarrow is a kilocalorie.
\longrightarrow is also known as a "large calorie", or "food calorie,"
\hookrightarrow for example, an apple contains about 90 Cal (which is 90 Kcal , or 90,000 cal)
\Rightarrow The SI unit of heat, work, and energy is the joule.
\rightarrow A joule (J) is the amount of energy used when a force of 1 newton moves an object 1 meter. \hookrightarrow One joule is equivalent to $1 \mathrm{~kg} \mathrm{~m} 2 / \mathrm{s} 2$, which is also called 1 newton-meter.
$\Rightarrow 1$ calorie is equal to 4.184 joules.
\rightarrow Two useful conversion factors:

$$
\left(\frac{4.184 \mathrm{~J}}{\mathrm{cal}}\right) \quad\left(\frac{1000 \mathrm{cal}}{C}\right)
$$

Heat Capacity vs. Specific Heat

HEAT CAPACITY

- [def] the amt of heat absorbed or released when undergoing a temperature change
- Extensive property (dependent on AMOUNT of material present)

$$
C=\frac{q}{\Delta T}\left(\frac{J}{{ }_{C}^{C}}\right) \quad \text { Heat Capacity } \quad(\underset{C}{C})
$$

SPECIFIC HEAT CAPACITY ("SPECIFIC HEAT")
 - [def] the amt of heat needed to raise 1 g of material $1^{\circ} \mathrm{C}$ (or K)
 - Intensive property (depends on the KIND material present)
 $$
c=\frac{q}{m \Delta T}\left(\frac{J}{g^{o} C}\right)
$$

Heat calculations

$$
\begin{aligned}
& q=m s \Delta T \quad(J) \\
& \text { how much }\rfloor] \text { how far } \\
& \text { how hard }
\end{aligned}
$$

$$
Q=m s\left(T_{f}-T_{i}\right)
$$

(EX) Calculate Heat for Given Temperature Change ¿How much heat, in J , is needed to raise 205 g of water from $21.2^{\circ} \mathrm{C}$ to $94.4^{\circ} \mathrm{C}$?

CALORIMETRY - "calor" = heat; metry = "measure"
Calorimeter -- device to measure Q chg

Fundamental Calorimetry Equations

$$
\text { (A) } \begin{array}{ll}
q(\text { in })=q(\text { out }) \\
& q(\text { lost })=q(\text { gained }) \\
& \Sigma q_{\text {(items that LOSE heat })}=\Sigma q_{\text {(items that GAIN heat })}
\end{array}
$$

(B) AT EQUILIBRIUM
$q($ hot item $)+q($ cold item $)=0$
$q($ hot item $)=-q($ cold item $)$
(EX) ID Metal via Calorimetry [ex 5.4]
¿A 59.7 g piece of metal that had been submerged in boiling water was quickly transferred into 60.0 mL of water initially at $22.0^{\circ} \mathrm{C}$. The final temperature is $28.5^{\circ} \mathrm{C}$. Use these data to determine the specific heat of the metal. Use this result to ID the metal?

(EX) Calc heat produced by RXN [ex 5.5b]
¿When 100. ml of $0.200 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$ and 100 . mL of $0.200 \mathrm{M} \mathrm{AgNO} 3(\mathrm{aq})$, both at $21.9^{\circ} \mathrm{C}$, are mixed in a coffee cup calorimeter, the temperature increases to $23.5^{\circ} \mathrm{C}$ as solid AgCl forms. How much heat is produced by this precipitation reaction? What assumptions did you make to determine your value?
 coffee cup calorimeter, the temperature increases to $23.5^{\circ} \mathrm{C}$ as solid AgCl forms. How much heat is produced by this precipitation reaction? What assumptions did you make to determine your value?
$q($ lost $)=q($ gained $)$
$q($ lost by chemial $r x n)=-[q($ gained by solution $)+q($ gained by calorimeter $)]$

- > assume no heat absorbed by calorimeter
$q(r x n)=q($ solution $)$
-> assume solution has same specific heat as water
$->$ assume solution has same density as water
$q(r x n)=m s \Delta T=\frac{(100 g+100 g)}{4.184 J} \frac{\left(23.5-21.9^{\circ} C\right)}{g^{\circ} C} \frac{(2)}{}$
$q(r x n)=1338 \mathrm{~J} \Rightarrow 1340 \mathrm{~J}$

Bomb Calorimetry

\longrightarrow SEALED... used to det'n Heats of Reaction
\hookrightarrow can produce large pressure, hence the term "bomb"
(EX) Calc heat of combustion [ex 5.7b]
¿When 0.963 g of benzene, C 6 H 6 , is burned in a bomb calorimeter, the temperature of the calorimeter increases by $8.39^{\circ} \mathrm{C}$. The bomb has a heat capacity of $784 \mathrm{~J} /{ }^{\circ}$ C and is submerged in 925 mL of water. How

Enthalpy [5.3]

CHEMICAL THERMODYNAMICS - deals with HEAT-WORK-OTHER ΔE in realtion fo chemical and physical phenomena

1st Law of Thermodynamics - Internal Energy

- positive q is heat flow in; negative q is heat flow out
- positive w if work is done on the system; and negative w if work is done by the system.

$$
H=U+P V \longleftarrow \text { arbitraus Def. }
$$

can't measme H divecty, \downarrow bul can measve diffume

$$
\Delta H=\Delta u+P \Delta V+V \Delta P
$$

© constat pressure $\downarrow \Delta P \rightarrow \varnothing$ or $P=k$

$$
\Delta H=\Delta u+P \Delta V
$$

$$
\begin{array}{l|l}
P \Delta V=-\omega & \Delta V \text { and } w \text { ae oproite sigus, by dof. }
\end{array}
$$

$$
\text { if } \Delta v_{\text {sys }}=(t) \text {, the sys expands, }
$$

$$
\text { then sus does wouk on suver, then } \omega=()
$$

$$
\begin{aligned}
\Delta H & =\Delta u+p \Delta V E \text { expansion work } \\
& =\left(q_{p}+w\right)+(-w)
\end{aligned}
$$

$$
\begin{gathered}
\text { need-to-knew } \\
\text { punchlire }
\end{gathered}\left\{\Delta H=q_{p} \quad \text { Enthalpy }=\text { Hect } @ p=k\right.
$$

(1)

Equation multiplier

- ΔH is associated with a particular chemical eq., with specified coefficients.
- ΔH is extrusive property, $=f(a m t)$, and changing coefficient means changing ΔH value proportionately.

$$
\begin{aligned}
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H & =-28(\mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{O}) & \Delta H & =-5 \times 2 \mathrm{~kJ}
\end{aligned}
$$

Phase often matters
Equations are also specific for phase $\left(s, l, g, a_{6}\right)$.

Sign of $\Delta \mathrm{H}$ as it relates to EXO/ENDO reactions

Sign of $\Delta L I \ldots$

- If $\Delta H=(-)$, then ax:
write as ProDuct
- If $\Delta H=(t)$, then ENDO
write as RSACTANT

$800 \mathrm{~kJ}+A \longrightarrow B$
$A \longrightarrow B \underset{\Downarrow}{ } \Delta H=-800 \mathrm{~kJ}$
$A \longrightarrow B \underset{\Downarrow}{ } \Delta H=-800 \mathrm{~kJ}$
$A \longrightarrow B+800 \mathrm{~kJ}$
$A \longrightarrow B+800 \mathrm{~kJ}$

- Two types of problems
$\hookrightarrow \Delta \mathrm{H}$ for run given, calc $\Delta \mathrm{H}$ for given quantity of material
$\hookrightarrow \Delta H$ for quantity of material given, calc $\Delta \mathrm{H}$ for r xn

Two Types of $\Delta \mathrm{H}$ Stoichiometry Problems

(1) Amount of heat (ΔH) given for a specific quantity of reactant or product
(2) Amount of heat (ΔH) given for a specific reaction equation

Solutions
(1) Amount of heat (ΔH) given for a specific quantity of reactant or product

- Ratio an amount of reactant or product to the amount of heat generated/consumed
- Use that ration as a CF, and use Dimensional Analysis to solve
(2) Amount of heat (ΔH) given for a specific reaction equation
- Use traditional stoichiometry to calculate the heat generated/consumed by a specific amount of reactant or product
- The "box" belongs below the in-line heat value (i.e., in the mole hole"
(EX) ΔH for quantity of material given, calc $\Delta H(r x n) \quad$ [ex 5.9]
¿A gummy bear contains 2.67 g sucrose, $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{11}$. When it reacts with 7.19 g potassium chlorate, KClO_{3}, 43.7 kJ of heat are produced. Determine the enthalpy change for the reaction, if sucrose is in excess...

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+8 \mathrm{KClO}_{3} \rightarrow \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}
$$

(1) Amount of heat (ΔH) given for a specific quantity of reactant or product

- Ratio an amount of reactant or product to the amount of heat generated/consumed
- Use that ration as a CF, and use Dimensional Analysis to solve
(EX) ΔH for quantity of material given, call $\Delta H(r x n) \quad$ [ex 5.9] ¿A gummy bear contains 2.67 g sucrose, $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{11}$. When it reacts with 7.19 g potassium chlorate, KClO_{3}, 43.7 kJ of heat are produced. Determine the enthalpy change for the reaction, if sucrose is in excess...

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+8 \mathrm{KClO}_{3} \rightarrow \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}
$$

(EX) $\Delta \mathrm{H}$ for quantity of material given, calc $\Delta H(r x n)$ ¿When 2.61 g of dimethyl ether is burned at constant pressure, 82.5 kJ of heat is given off. What is $\Delta H(\mathrm{rxn})$?

$$
\frac{\square k J}{\text { mad van }}=\frac{82.5 \mathrm{~kJ}}{}
$$

$$
\frac{\square k J}{\text { mad ven }}=\begin{array}{l|l|l|}
82.5 \mathrm{~kJ} & 46.02, \mu \varepsilon & 1 \mathrm{ml} \mathrm{M} \mathrm{\varepsilon} \\
2.4 \mathrm{~g}, \mu \varepsilon & 1 \mathrm{~mol} \mu \varepsilon & 1 \mathrm{md} \mathrm{man}
\end{array}=\begin{aligned}
& 1450 \mathrm{~kJ} / \mathrm{ml} \text { ven } \\
& 1454.02 \\
& \text { cal }
\end{aligned}
$$

- standard s tate $=$ reference point $\approx 0^{\circ} C=f_{p}$ (water) \rightarrow (gas) $P=l \mathrm{bar}=0.987 \mathrm{~atm}$ $\longrightarrow(a q) \quad \mu: \wedge \mu$ $\hookrightarrow(s, l)$ pure
- "o" indicates steed state:
$\rightarrow \Delta H_{298}^{\circ}=$ occurs under std stake 298 K L
$\rightarrow \Delta H^{\prime \prime}={ }^{\prime \prime}$ NON-std-state conditions
- "mole reaction" (P251/259)
\rightarrow divided $\Delta H_{\text {ion }}$ by ants (mules) of veactat s :
\rightarrow yield intensive poiputy fum 2 axtersious poop ΔH and \# moles
... analogous to Density (Intanscur) fum Mass ($4 \times T$) and Volume ($\{\times T$)

Std Enthalpy of Combustion, $\Delta \mathrm{Hc}^{\circ}$
\longrightarrow If $\Delta \mathrm{Hc}^{\circ}$ given, then often becomes a probem of the type: ' $\Delta \mathrm{H}$ for run given, call $\Delta \mathrm{H}$ for given quantity of material'

$$
2 \mathrm{M}+\underset{\substack{\text { oxygen }} \underset{\text { oxide }}{\mathrm{O}_{2}} \rightarrow \underset{(\varepsilon \times 0)}{2 \mathrm{MO}}}{ } \quad \Delta H_{c}^{\circ}=-\neq \begin{aligned}
& (\xi \\
& (\varepsilon)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \frac{\text { Item }}{\text { carbon, } c} \frac{\Delta H_{\mathrm{L}}^{\circ}(\mathrm{kJ} / \mathrm{mol})}{-393.5} \\
& \text { Mg -601.6 } \\
& \mathrm{CH}_{4} \\
& \mathrm{HC} \equiv \mathrm{CH} \\
& \text { i-C8 } \\
& \text { EtOn } \\
& -890.8{ }^{3 \text { ur }} \text { hottest natuid chem. Flame } \\
& -1,301.1\left(3600 \mathrm{~K} / 3330^{\circ} \mathrm{C} / 6020^{\circ} \mathrm{F}\right) \\
& -5461 \rightarrow \text { flux } 7 \text { end }\left(900^{\circ} \mathrm{C} / 1650^{\circ} \mathrm{F}\right) \\
& -1366.8 \longleftarrow \text { tact Book } 8 x \text {. }
\end{aligned}
$$

Aside: Flame Temp enctucs: Natal gas $2,070^{\circ} \mathrm{C}$ Keno 2,093
(EX) ΔH for quantity of material given, calc ΔH for run [ex 5.10b] ¿How much heat is produced by the combustion of 125 g of acetylene, given $\Delta \mathrm{Hc}{ }^{\circ}=-1301.1 \mathrm{~kJ} / \mathrm{mol} @$ $25^{\circ} \mathrm{C}$?

Standard Enthalpy of Formation

\rightarrow Essentially, the amount of heat it takes to produce 1 mole of compound from "scratch" (elemats), assuming the
\longrightarrow Std Entrapper of formation of each element is zero (unless - the wise noted).

$$
\mathrm{C}_{(8)}+\mathrm{O}_{2}(2) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta H_{f}^{\circ}=-393.5 \mathrm{~kJ}
$$

$$
1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})
$$

$$
=\quad+33.2 \mathrm{~kJ}
$$

(APPENDIX G)
(EX) Write $\Delta H f$ Reaction [ex 5.12a]
¿Write the heat of reaction for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, ethanol?

$$
\begin{aligned}
& \text { Using APPSUDIX G data: } \\
& 2 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell) \quad \Delta H_{f}^{\circ}=-277.6 \mathrm{~kJ} / \mathrm{ll} \\
& \uparrow \quad \uparrow \mathrm{~mol}
\end{aligned}
$$

$$
\Delta H_{\text {nxn }}^{\circ}=\Delta H_{\text {man a }}^{0}+\Delta H_{\text {nan }}^{0}+\Delta H_{\text {nan } c}^{0}=\sum \Delta H_{\text {nax }, i}^{0}
$$

$$
\begin{aligned}
& \text { (3) } \mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})-283 \\
& 2+3=1(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow\left(\mathrm{O}_{2}(\mathrm{~g})-394 k\right.
\end{aligned}
$$

(EX) HESS (2-tier+rev+multiplier) [ex 5.13b]
¿Calc $\Delta \mathrm{H}(\mathrm{rxn})$ for the equation: $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ given,

$$
\begin{aligned}
& \text { (a) } \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) \longrightarrow+180.5 \mathrm{k} 5 / \mathrm{hal} \text { nan } \\
& \text { (b) } \quad \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad+57.06 \mathrm{~kJ} / \text { al man }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{clll}
2 N 0+2 \mathrm{~N}_{2} & \xrightarrow[1]{1} 2 \mathrm{NO}_{2} & 2(-57.06) \\
\mathrm{N}_{2}+2 \mathrm{O}_{2} & \xrightarrow{1} 2 \mathrm{NO}_{2} & +66.4 \mathrm{~kJ} \\
\hline
\end{array} \\
& \begin{aligned}
& \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO} \quad 180.5 \mathrm{~kJ} \\
& 2\left(\mathrm{NO}^{2}+1 / 2 \mathrm{O}_{2}\right.\left.\rightarrow \mathrm{NO}_{2}\right) \quad 2(-57.06) \mathrm{kJ} \\
& \Downarrow
\end{aligned} \\
& \begin{array}{rlr}
\mathrm{N}_{2}+\mathrm{O}_{2} & \rightarrow 270 \mathrm{O} & 80.5 \mathrm{~kJ} \\
2 \mathrm{NQ}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{NO}_{2} & -114.1 \\
\hline \mathrm{~N}_{2}+2 \mathrm{O}_{2} & \rightarrow 2 \mathrm{NO}_{2} & +66.4 \mathrm{~kJ}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \Delta H_{f}^{0}(4) \quad \Delta f_{f}^{\circ}(\Delta) \quad \Delta H_{f}^{0}(c) \quad \Delta H_{f}^{0}(D) \quad \Delta H_{f}^{0}\left(v x_{n}\right)=\left[\Delta H_{f}^{0}(c)+\Delta H_{f}^{0}(\theta)\right]\left[\Delta \Delta H_{f}^{0}(1)-\Delta H_{f}^{0}(\theta)\right] \\
& \Delta H_{f}^{\circ}(r \times n)=\sum n \Delta H_{f}^{+} \text {(PROD) }-\sum n \Delta H_{f}^{\circ} \text { (RAT) }
\end{aligned}
$$

(EX) Hess: Calc ΔH° from Reactant \& Prod $\Delta H^{\circ}{ }^{\circ}$ values [5.15b] ¿Calc $\Delta \mathrm{H}$ (comb) for 1 mole of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)$, given $\Delta \mathrm{H}^{\circ}($ form $)$ value for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)(-278 \mathrm{~kJ} / \mathrm{mol})$, $\mathrm{H}_{2} \mathrm{O}(-286)$, and $\mathrm{CO}_{2}(-394)$?

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { Question } \\
\text { ven. } \\
1 \text { mod }
\end{array} \mathrm{S}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+1368 \mathrm{GS}
\end{array} \\
& 1(-278) \quad 3(8) \quad 2(-394) \quad 3(-286) \\
& \text { prod rant } \\
& \Delta A_{f}=[P \text { POD }]-[\text { AC }]=[2(-394)+3(-288]-[1(-278)+3(\delta)] \\
& =[-788+-858]+[+278] \\
& =[-1646]+[278] \\
& \Delta H_{v \times n}=-1368 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}
\end{aligned}
$$

Exam Review Practice Problems

(EX) Calculate ΔH (liberated) based on ΔH (std rxn)
¿How much heat is liberated when 0.113 mole of sodium reacts with excess water, according to the equation what has a $\Delta H(r x n)$ value of $-368 \mathrm{~kJ} / \mathrm{mol} r \times n$?

$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{NaOH}+368 \mathrm{~kJ}$ 0.11 ヨ

CAVaAT !!! A word problen mas not state the vale is erotlermic, rathee, a phrase such as "librodes"

```
If one says "I bmoued" or "I gace" you $20,
you are respusible to know wheth yon need to
debit their accout (-$20), or credit theiacct. ($$20)
```

(EX) Calculate exotherm from ΔH data
¿How much heat is given off when 24.2 g of Al is oxidized to aluminum oxide at $25^{\circ} \mathrm{Ca}$ nd $1 \mathrm{~atm} ?\left(\Delta \mathrm{H}^{\circ}=-\right.$ 3352 kJ/mol run)

$$
\begin{aligned}
& 24.2 \mathrm{~g} \\
& 4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}+3352 \mathrm{~kJ}
\end{aligned}
$$

(EX) Calculate ΔH° (formation) data
¿Given the following equation, determine ΔH° f for HBr ?

$$
\begin{aligned}
& \mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}_{2} \quad \Delta H^{\circ}=-78.2 \mathrm{~kJ} / \text { mol ran } \\
& \text { b) definition of "formation" } \| \div 2 \\
& \text { only need 1 mol } \mathrm{Br}_{2} \\
& 1 / 2 \mathrm{H}_{2}+1 / 2 \mathrm{Br}_{2} \longrightarrow 1 \mathrm{Hr} \quad \Delta H^{\circ}=\frac{1}{2}(-78.2)=-36.4 \mathrm{~kJ} / \mathrm{mal} \mathrm{HBr}
\end{aligned}
$$

$\begin{array}{rlr}\begin{array}{c}\mathrm{C}+\mathrm{O}_{2} \\ \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}\end{array} \rightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}=393.5 \mathrm{~kJ} \\ \text { mone to }_{2} & 283.0 \mathrm{~kJ} \\ & \|\end{array}$

$\begin{array}{l}1 / 2 \\ C+O_{2}\end{array} \rightarrow \mathrm{SO}_{2}$	393.5	
$\mathrm{CO} \mathrm{O}_{2}$	$\rightarrow \mathrm{CO}+\frac{1}{2} \mathrm{O}_{2}$	-283.0
$C+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}$	-110.5 kJ	

EX: HESS (3 tier + reverse + multiplier)
¿ Call ΔH far: $\mathrm{C}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}$, given:

¿Calculate $\Delta H(r x n)$ for the reaction:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccc}
\substack{\text { needs to be } \\
\text { on REACT-side }} & \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}-1411 \\
& \downarrow
\end{array} \\
& \begin{array}{lll}
\begin{array}{l}
2 \mathrm{CO}_{2}+{ }^{1} \mathrm{KH}_{2} \mathrm{O} \\
\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2}
\end{array} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2} & +1367 \\
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}(\mathrm{O})+2 \mathrm{H}_{2} \mathrm{O}
\end{array} \xrightarrow{+1411} \begin{array}{l}
-1 \mathrm{~kJ} / \mathrm{ml}
\end{array} \\
& \begin{array}{l}
1367 \\
-44 \downarrow \\
\downarrow \\
\downarrow
\end{array}
\end{aligned}
$$

Ex: Call ΔH roan from Δ Affirmation Data 2
¿ Cull striven for the following ran, using ΔH_{f} vales fum a data table?

$$
\begin{array}{r}
\Delta H_{f}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=-277.7 \mathrm{~kJ} / \mathrm{ml} ;\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)= \\
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}(\mathrm{Q}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH} \\
\Delta \mathrm{H}_{\mathrm{f}}+52.3-285.8 \\
-277.7
\end{array}
$$

$$
\begin{aligned}
\Delta A_{\text {AN }} & =[-277.7]-[(52.3)+(-285.8)] \\
\Delta_{H_{\text {RN }}} & =[-277.7]-[-233.5] \\
\Delta H_{\text {Kan }} & =-44.2 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

