

Chapter 08: ADVANCED THEORIES OF COVALENT BONDING

Valence Bond Theory [8.1]

Sigma and Pi bonds

(σ) Signa bond - bond <u>along</u> INTERNUCLEAR AXU (π) p: bond - bond <u>outside</u> INTERNUCLEAR AXIS - Side-by-side p-orbital overlap	H O D H
$(\sigma) \qquad (\bullet) $	(π)
	hybrdadt Sp - H - C C - 11

EX: COUNT OF AND TT BONDS [EX: 8.1]
¿ Butadiene, C6H6, is a component of synthetic rubber.
ID the number of to to Thouse.
7 or bonds from single bonds) 9 or hand tatal
2 or bonds fin double bonds / () sono ()
2 7 bonds " " "

Hybrid Atomic Orbitals [8.2]

AD's "Morph" "Hiros) combine > MO's Process = LCAO (Linear Combination of Atomic Orbitals) hybridization (new shape of combined AD's) sp Hybridization consider the in Bellz - Cl: :Ch: (e=Be=ce → <u>1L</u> s pp p p → <u>1b</u> <u>1L</u> sp p p p p hybridze 2Ao's to produce 2 Mo's (o pouls) ↓ SP Be SP

sp3d and sp3d2 Hybridization S PPP addad S PPP da, ddd hybrid 2 6 Ad's to produce 6 0' hybridice 5 Ad's to produe 50's ex: Pl6 XeF4 ex: Ples, SF4 Assignment of Hybrid Orbitals to Central Atoms Lo essen Trilly: theat each atom as central atom: O deter LDS, (2) det in AttaD, and 1D bounding using USEPK, (3) assign hybridizedion

Multiple Bonds [8.3]

Molecular Orbital Theory [8.4]

[P421/429]

	Mainatic Field	Appavent Walcont	All electrons paied or not?
Para magnetic	attrads	appears hearin	unpaired electrics
Dia magnetic	vepels	" lighter	panel dectrons

Comparison of Bond	ding Theories
Valence Bond Theory	Molecular Orbital Theory
considers bonds as localized between one pair of atoms	considers electrons delocalized throughout the entire molecule
creates bonds from overlap of atomic orbitals (s, p, d) and hybrid orbitals (sp, sp ² , sp ³)	combines atomic orbitals to form molecular orbitals (σ, σ*, π, π*)
forms σ or π bonds	creates bonding and antibonding interactions based on which orbitals are filled
predicts molecular shape based on the number of regions of electron density	predicts the arrangement of electrons in molecules
needs multiple structures to describe resonance	
molecular orbital (no) theory	- uses quantum made. 4
molecular orbital = 42	-
homonuclean diatomic molecular	= ux: H2, ce,
LCAO = Linear Combination of (Debitals = mothema lizal
combralious of atomic orbi	the war functions

BONDING (5) vs. ANTIDUNDING (5*) (b) Figure 8.28 (a) When in-phase waves combine, constructive interference produces a wave with greater amplitude. (b) When out-of-phase waves combine, destructive interference produces a wave with less (or no) amplitude.

	Atomic orbitals	Combine	Molecular orbitals		
E	• • -	Subtract	Antibonding orbital, σ_s^*	FIG 9.29	
	S S	Add	Bonding orbital, σ_s		
1	2A0_		> 240		
P-ORSI- PX	UPL COMSIN A	нтіон : Нано -то-	Hzai) ••••• •••	16 8.30	
^ر م×*	•••• + 2.1		σ _{ρx} 		

EX: PRADICT AO COMBINATION -> NO [EX 8.5]
(a) head to head \therefore σ in phase \therefore σ (bonding) $3p \times 3p$ orbitals \therefore $\overline{3p}$ (a) (b) (c)
(b) head -to-sike : incorrect alconnect
both in-phase and out-of Johase overlap (C) side -to-side : T
in cancels out out - y - place in pt (antibudy)
no bonding 3p +>p .: Trzp
i Label as σ , τ_1 , v and , antiform $*$
(2) head-to-head :- to (ii) out-of phase :- 5-*

Molecular Orbital Energy Diagrams

Figure 8.34 This is the molecular orbital diagram for the homonuclear diatomic Be2+, showing the molecular orbitals of the valence shell only. The molecular orbitals are filled in

the same manner as atomic orbitals, using the Aufbau principle and Hund's rule.

Bond Order

BOND OKORR - net ("* * *) contribution of electrons to brid strigth.

The Diatomic Molecules of the Second Period

[1431/439]

