$$
\begin{gathered}
1411-\text { E3 } \\
\text { CH } 09-\text { Gases }
\end{gathered}
$$

Chapter 09: Gases

Gas Pressure [9.1]
[P 448/456]
\rightarrow atm pressure (1 atm) - pressure at sea level exerted by a column of air $\lambda^{\text {in }^{2}}$ and extending to space.
\rightarrow def: $\quad P=F / A$

$$
\begin{aligned}
& F=\text { Newton 2 } A \text { in m }^{2} \\
& \left.P=\frac{F}{A}=\frac{1 \mathrm{~kg} \cdot m}{} \frac{1}{\mathrm{~s}^{2}} \right\rvert\, \mathrm{m}^{2}
\end{aligned}=\frac{1 \mathrm{~kg}}{\mathrm{~s}^{2} m}=1 P_{a} \text { Pascal } 2
$$

$\dot{\subset}$ A typical barometric pressure in Kansas City is 740 torr. What is this pressure in atmospheres, in millimeters of mercury, in kilopascals, and in bar?

Baromatan
BAcomateo-tube closed at one end, filled os NVLquid, and inverted into bath if the sam NVLruid. hydrostatic pressure - pressure fluid exerts due to pull of grain.

$$
p=h \rho g \quad h=\text { height } ; \rho=\text { density } ; g=\text { acceleration of gravity }
$$

Ex: Call Column Heicht win Pressured [4×9.26]
\dot{C} Calculate the height of a column of water at $25^{\circ} \mathrm{C}$ that corresponds to normal atmospheric pressure. The density of water at this temperature is

Manomazar
manometer - gas vessel connected to U-tube containing Non Volatile Liquid (NVL)

- may be open or closed end.

Figure 9.5 A manometer can be used to measure the pressure of a gas. The (difference in) height between the liquid levels (h) is a measure of the pressure. Mercury is usually used because of its large density.

SPHYGMOMONOMatar: MaASuRa HUMAN BLOUD PRESSuRe sphygmomanometer (Greek sphygmos = "pulse"). It consists of an inflatable cuff to restrict blood flow, a manometer to measure the pressure, and a method of determining when blood flow begins and when it becomes impeded (Figure 9.6)

Relating Pressure, Volume, Amount, and Temperature:

Early scientist could it weave munch, but they conf:

- Tamper atira
- volume
- Pressure « 1644 Torricelli inverted the marcus barometer
Call, called eurty space allure the Hg_{g} "vacuum")

$$
P=k \underline{n}
$$

Pressure and Temperature: Amontons's Law /6a-Lussac's Law

Volume and Temperature: Charles's Law

$$
P V=k
$$

Volume and Pressure: Boyle's Law

$$
\frac{P}{l}=\frac{1}{V}
$$

$$
p \stackrel{(B)}{-\sqrt{(A)}} n
$$

Moles of Gas and Volume: Avogadro's Law
(6-4)

The Ideal Gas Law [9467/475]

$$
\begin{aligned}
& \begin{array}{l|l}
P & = \\
p & = \\
V= & R=\frac{0.08206 \mathrm{~atm} \cdot \mathrm{~L}}{k} \\
k^{\prime} T & T \\
k^{\prime \prime} & T
\end{array} \\
& V=n \\
& P V=n R T \\
& \begin{aligned}
R & =\frac{0.08206 \mathrm{~atm} \cdot \mathrm{~L}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& =\frac{8.314 \mathrm{kPa} \mathrm{\cdot} \cdot \mathrm{~L}}{\text { mol. } \cdot \mathrm{K}}=\frac{8.314 \mathrm{~J}}{\text { mol. } \mathrm{K}}
\end{aligned} \\
& =\frac{1.987 \mathrm{col}}{\operatorname{mol} \cdot \mathrm{~K}}
\end{aligned}
$$

* TEMP must be in KELUIN

THREE THINGS You nEED TO KNOW to SOLUR ANS KL Nab:
(I)

Standard Conditions of Temperature and Pressure

$$
\begin{aligned}
& \hookrightarrow " S T P " \\
& \hookrightarrow \quad T=273.15 \mathrm{~K} \text { (eract) } \\
& \hookrightarrow \quad P=1 \text { atm (eract) } / 101.325 \mathrm{kPa}
\end{aligned}
$$

\rightarrow @STP, volue \& IDAAL GAS $=\frac{22.4 L}{\text { mul }}$ (ii) idad gos
(11) COMBINED $16 L$ (BEFORE-AETAR ScanAMios) changing system

$$
R=\frac{P V}{n T}=\frac{P^{\prime} V^{\prime}}{n^{\prime} T^{\prime}}
$$

$$
\varepsilon A_{\mathcal{1}} S T
$$

stationany system
(3) Substitutr otitan Eauations for IGL Vaniabls

Stoichiometry of Gaseous Substances, Mixtures, and Reactions [9.3]

SX: 16L-CMCP density [W9: \{oc 12.45\}
i
(a) A chemist is preparing to carry out a reaction at high pressure that requires 36.0 mol of hydrogen gas. The chemist pumps the hydrogen into a $12.3-\mathrm{L}$ rigid steel container at $25^{\circ} \mathrm{C}$. To what pressure (in atmospheres) must the hydrogen be compressed? (b) What would be the density of the highpressure hydrogen?

$$
=56.8 \mathrm{~atm}
$$

(b)

$4.69 \mathrm{~g} / \mathrm{L}$

Ex: COMSINAD 16 C
[wa: $12-35$]
i
385
A $280 . \mathrm{mL}$ sample of neon exerts a pressure of 670 . torr at $26^{\circ} \mathrm{C}$. At what temperature in ${ }^{\circ} \mathrm{C}$ would it exert a pressure of 940 . torr in a volume of 440. mL?

Ex: 16L-CAC MW
[wa: 12-56 acc]
dA cylinder was found in a storeroom of a manufacturing plant. The label on the cylinder was gone and no one remembered what the cylinder held. A 0.00500gram sample was found to occupy 4.13 mL at $23^{\circ} \mathrm{C}$ and 745 torr. The sample was also found to be composed of only carbon and hydrogen. Identify the gas.

$M \omega=\frac{9}{n}$

$$
\frac{M_{w}}{1}=\frac{g R T}{P V}
$$

$$
n=\frac{g}{\operatorname{mu}} \quad(\text { Ans next pe })
$$

Molar Mass of a Gas
Ex: 1GL-CACMW
[59 : $12-56$ soc]
CA cylinder was found in a storeroom of a manufacturing plant. The label on the cylinder was gone and no one remembered what the cylinder held. A 0.00500gram sample was found to occupy 4.13 mL at $23^{\circ} \mathrm{C}$ and 745 torr. The sample was also found to be composed of only carbon and hydrogen. Identify the gas.

2. Pressure, occupies 27.0 Liters and has a density of
$1.41 \mathrm{~g} / \mathrm{L}$. (a) What is its Density at STP (b) what is it MW?

38.12
know

$$
P V=n R T
$$

$$
V=\frac{\bar{u}^{2} T^{2}}{P}
$$

$170 \mathrm{~g} / \mathrm{L}=22.4 \mathrm{~L}$
$\mu \omega=\frac{\square_{g}}{\square_{\text {mel }}}=38.1=\mathrm{mm} \quad$ (ANS part page)

Ex: 1GL- MW $\& D_{\text {ansity }}+\operatorname{STP}$
¿ 1.00 mol of an unknown gas, at an unknown Temp F
Pressure, occupies 27.0 Liters and has a density of
$1.41 \mathrm{~g} / \mathrm{L}$. (a) What is its Density at STP. (b) what is its MW?

Ex: 16L - STATH: se>, Sk< vo r [wa: $4 \times 12-9$, intext]
\dot{c} What is the volume of a gas balloon filled with 4.00 moles of He when the atmospheric pressure is 748 torr and the temperature is $30 .{ }^{\circ} \mathrm{C}$?

$$
V=\frac{n R T}{P}
$$

$$
\begin{array}{l|l|l|l}
\square L \\
1
\end{array}=\begin{array}{ll|l}
0.0821 \mathrm{dK} L & & 4.00 \mathrm{mok} \\
\hline \mathrm{mg} \cdot \mathrm{~K} & 0.984 \mathrm{~d} \alpha & \\
\end{array}
$$

(ANS not pye)

Ex: 16L - STats syn>, <RC Vo r [wa: 4×12-9, intexT]
\dot{c} What is the volume of a gas balloon filled with 4.00 moles of He when the atmospheric pressure is 748 torr and the temperature is $30 .{ }^{\circ} \mathrm{C}$?

EX: 1GL-Static $S_{y s}$ - CANc "g" [wa: 12-10, in fort]
\dot{C} A helium-filled weather balloon has a volume of 7240 cubic feet. How many grams of helium would be required to inflate this balloon to a
 pressure of 745 torr at $21^{\circ} \mathrm{C}$? $(1 \mathrm{ft} \wedge 3=28.3 \mathrm{~L})$

CX: 1GL - Static sos - CAMe "g" [wa: 12-10, in fort]
\dot{C} A helium-filled weather balloon has a volume of 7240 cubic feet. How many grams of helium would be required to inflate this balloon to a pressure of 745 torr at $21^{\circ} \mathrm{C}$? $(1 \mathrm{ft} \wedge 3=28.3 \mathrm{~L})$

$$
\begin{array}{l|l}
\text { He } & P V=n R T=\frac{9 R I}{\mu W} \Leftrightarrow g=\frac{P V \mu \omega}{R T} \\
7240 \mathrm{ft}^{3} \\
745 \text { four }(0.980 \mathrm{~atm}) & \\
21^{\circ} \mathrm{C}(294 \mathrm{~K})
\end{array}
$$

$$
P_{T}=\sum P_{i}=P_{a}+P_{b}+P_{c} \ldots
$$

Partiar Pressuran: prossure exerted by each individual gas Mon Fraction $(x):\left(\frac{D_{\text {aut }}}{\text { hule }} \times 100\right)$ whar part, uhle expossed in MoxES

$$
\begin{aligned}
P_{i} u_{i} & =n_{i} R T_{i} \\
n_{i} & =\frac{P_{1} u_{i}}{R T_{i}}
\end{aligned}
$$

$$
Y_{i}=\frac{P_{i} V_{i}}{R T_{i}} \left\lvert\, \frac{R T_{T}}{P_{T} V_{T}} \quad\left\{\begin{array}{l}
P_{T} V_{T}=n_{T} R T \\
P_{T} R_{T} V_{i}=n_{i} R T \\
i V_{i}=
\end{array}\right.\right.
$$

¿X: 1GL + PALTON - CALC P AND Pi [wa: \&x 12-15]
$\dot{\perp}$ A 10.0-liter flask contains 0.200 mole of methane, 0.300 mole of hydrogen, and 0.400 mole of nitrogen at $25^{\circ} \mathrm{C}$. (a) What is the pressure, in atmospheres, inside the flask? (b) What is the partial pressure of N2?

$$
\begin{array}{|ccc|}
\hline 0.200 \mathrm{ml} & \mathrm{CH}_{4} \\
0.300 & \text { " } & \mathrm{H}_{2} \\
0.400 & \mathrm{u} & \mathrm{~N}_{2} \\
298 \mathrm{~K} & \\
10.0 \mathrm{~L} & \\
\hline
\end{array}
$$

$$
\text { (a) } \begin{aligned}
& ? V \pm V / \\
& P_{T} V_{T}=n_{T} R T
\end{aligned} \quad P=\frac{n R T}{V}
$$

 0. 978 alin

$$
P_{N} V_{N}=n, R T e P_{N}=\frac{n_{N} R T}{V_{N}}=\begin{array}{l|l|l|}
0.400 \mathrm{cl} & 0.0821 \mathrm{ath} . \mathrm{L} & 298 \mathrm{~K} \\
\hline \mathrm{md} \cdot \mathrm{~K} & 10.0 \mathrm{~L}
\end{array}=0.979 \mathrm{atan} .
$$

Collection of Gases over Water
\rightarrow Prossm: collected gas is contaminated with water unpor

$$
\longrightarrow \quad P_{T}=\Sigma P_{i}=P_{\text {gas }}+P_{\text {LATTE }}
$$

Reaction producing gas
FIG. 9.21

$$
\begin{gathered}
P_{T}=P_{\mathrm{O}_{2}}-P_{v} \\
\left(P_{T}-P_{w}\right)=P_{\mathrm{o}_{2}}
\end{gathered}
$$

IGL - COLLECTED OVER WATER
(EX) ¿Hydrogen was collected over water (Figure 12-7) at $21^{\circ} \mathrm{C}$ on a day when the atmospheric pressure was 748 torr. The volume of the gas sample collected was $300 \mathrm{~mL} .<(\mathrm{a})$ How many moles of H 2 were present? (b) How many moles of water vapor were present in the moist gas mixture? (c) What is the mole fraction of hydrogen in the moist gas mixture?> What would be the mass of the gas sample if it were dry?

\rightarrow Translation of this section: Car usa PU=nKT TO G\&T into THE MOLE HOLE

$$
P, V, T
$$

(EX) STOICHIOMETRY OF A GAS USING VOLUME. [ex9.17b] ¿An acetylene tank for an oxyacetylene welding torch provides 9340 L of acetylene gas, C 2 H 2 , at $0^{\circ} \mathrm{C}$ and 1 atm. How many tanks of oxygen, each

$$
H-C \equiv C-1+
$$ providing $7.00 \times 10^{\wedge} 3 \mathrm{~L}$ of O 2 at $0{ }^{\circ} \mathrm{C}$ and 1 atm, will be required to burn the acetylene?

$$
\text { sip }=\left(\frac{22.4 C}{\text { al }}\right)
$$

$$
\left(\frac{9340 L}{\operatorname{tank}, A_{C}}\right)\left(\frac{7.00 E 3 L}{\tan k O_{2}}\right)
$$

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\frac{5}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

CAVart \# 1: Assumes IRate Gas

CAVGAT \& 2: AL GASCS at SAME TEMP \& PRCOSSHE
$\ldots \frac{1+\mathrm{Thk}^{\mathrm{O}} \mathrm{C}}{7.00 \times 10^{3} \mathrm{LO}_{2}}$

Ex: STOICHIOMATRY OE GASAS: mol $_{A} \rightarrow$ vol $_{B}$
[ax 9.196$]$
¿Sulfur dioxide is an intermediate in the preparation of sulfuric acid. What volume of SO 2 at $343{ }^{\circ} \mathrm{C}$ and 1.21 atm is produced by burning I . 00 kg of sulfur in oxygen?

mean free path - avg. distance between collisions diffusion - dispersal of molecules in space due to differences in concentration
rate of diffusion $=\frac{\text { amt of gas passing through an area }}{\text { unit of time }}$
effusion - escape of gas into lower pressure area through a pinhole
Graham's Law of Effusion
\rightarrow heavier the molecule, the slower it moves
rate of effusion $\mathcal{C} \frac{1}{\sqrt{M}} \quad \frac{\text { rate of effusion of } A}{\text { rate of effusion of } B}=\frac{\sqrt{M_{B}}}{\sqrt{M_{A}}}$

Ex: CRE Mu from Grattan [Collins Out lines, $\left.E_{x} 6.26, P(3)\right]$
i An unkuruch gas efferses at a vat of 0.632 time that of O_{2}.
who is the MM of the unkuson gas?

$$
\frac{\text { rete } O_{2}}{\text { vale unk }}=\frac{\sqrt{M \omega_{m u t}}}{\sqrt{M \omega_{02}}} \Rightarrow \frac{1}{0.632}=\frac{\sqrt{x}}{\sqrt{32.0}} \Leftrightarrow x=\left(\frac{\sqrt{32}}{0.632}\right)^{2}=80.1 \mathrm{~g} / \mathrm{ml}
$$

[ex9.21b]
¿A party balloon filled with helium deflates to $2 / 3$ of its original volume in 8.0 hours. How long will it take an identical balloon filled with the same number of moles of air $(M=28.2 \mathrm{~g} / \mathrm{mol})$ to deflate to $1 / 2$ of its original volume?

The Kinetic-Molecular Theory [9.5]

$$
[P 488 / 496]
$$

Kinetic molecular theong (KMT) - simple mold to explan gas law obs. vatoud.ze Basic Tenats
(1) Stracht-Lus mo 7100 N , excent when hit wall or another

$$
\frac{p U}{n T}=R
$$

(2) DIScerte, SMALL PARTICLES, for, tan apart $\leftarrow \therefore$ no interato of influse b oden
(3) Pelessuer = patieles hitting container wall nolecubs.
(4) PARTFCLE) ARE w-wFLuenCED, feel no attractor/uepalsion wo othaus
(s) $\overline{K \varepsilon} \propto \operatorname{TEmp}(\dot{m} K)$

2 Fectors
(1) Collison Frequenayg (often) $\longleftarrow n$
(2) Collsen Vigor (had) $\leftarrow T$

Kinetic-Molecular Theory Explains the Behavior of Gases, Part I lecular Velocities and Kinetic Energy
Kinetic-Molecular Theory Explains the Behavior of Gases, Part II n-Ideal Gas Behavior [9.6]

Root Mean Squae Velocty
$K \varepsilon$ of a partcle of mass (m) and speed $(u)=$
(10) $K E=\frac{1}{2} m n^{2}$

$$
u_{\text {rms }}^{u^{2}}=\sqrt{\frac{\bar{u}^{2}}{\frac{u_{1}^{2}+u_{2}^{2}+u_{3}^{2} \cdots}{n}}}
$$

(1b) $K E_{A V G}=\frac{1}{2} m u_{R M S}^{2}$
(2) $K E_{A V E}=\frac{3}{2} R T$

$$
\frac{1}{2} m u_{r m s}^{2}=\frac{3}{2} R T
$$

ξ
(3) $u_{r m s}=\sqrt{\frac{3 R T}{m}}$

$O_{L} \subset 1000^{\circ} \mathrm{C}, \bar{u}=1600 \mathrm{~m}$

Effusion Rote is. Mass
(deviation el GRauALSLNA)

$$
\begin{equation*}
\frac{\text { effuse rat } A}{\text { offish at } B}=\frac{u_{\text {rms } A}}{u_{\text {rms }} B}=\frac{\sqrt{\frac{3 R T}{m_{a}}}}{\sqrt{\frac{3 R T}{m_{b}}}}=\sqrt{\frac{m_{B}}{m_{A}}} \tag{5}
\end{equation*}
$$

$$
\begin{aligned}
& \text { - rate (u,"rté) } \\
& \text { - Temp } \\
& \text { - } k a \\
& \text { - } m / M r
\end{aligned}
$$

NON- IOATC CASSS ("RaM MONLD")

$$
\begin{aligned}
P V & =n R T \\
z & =n=\frac{P V}{R T}
\end{aligned}
$$

High Presone Low Terp

$$
\begin{aligned}
& P U=n R T
\end{aligned}
$$

" a ' $+b^{\prime}$ " are constants.

