

CHAPTER 12: KINETICS

Introduction

Sam Rayburn Dam Analogy

- Energy Potential is
 favorable __ but there
 is a BARRIED ... a "hump"
- · Flow can be regulated by lowering /raising the gate.
- In human body, <u>ENZYMES</u> "regulate the gate"

$$aA \ + \ bB \ o \ cC \ + \ dD$$

... for example...

$$2 \, H_2 O_2(aq) \ o \ 2 \, H_2 O(l) \ + \ O_2(g)$$

Focusing on H202 ...

Time (h)	$[H_2O_2]$ (mol L ⁻¹)	Δ [H ₂ O ₂] (mol L ⁻¹)	Δt (h)	Rate of Decomposition, (mol/L/h)
0.00	1.000			
6.00	0.500	-0.500	6.00	-0.0833
10.00	0.050	-0.250	6.00	-0.0417
12.00	0.250	-0.125	6.00	-0.0208
18.00	0.125		C 00	0.0100
24.00	0.0625	-0.062	6.00	-0.0103

Terms

(i) Initial Rate
 (ii) Instantaneous rate - any point on curve
 (iii) Average rate - above: 0+6hu rate = 0.0833 M/h
 6+24hu " = 0.0104 M/h

$$aA + bB \rightarrow cC + dD$$

$$rate = -\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = +\frac{1}{c} \frac{d[C]}{dt} = +\frac{1}{d} \frac{d[D]}{dt}$$

$$\overset{\text{Roc}}{\underbrace{\text{Roc}}}$$

... for example...

$$2NH_3(g) ~
ightarrow~ 2N_2(g) ~+~ 3H_2(g)$$

• All 3 species appear/disappear at different rates, but there is only one rate of reaction (after all, we are talking about a single reaction)

There may be several ROC's for any given reaction, but always on one ROR

• Can monitor what is happening in the kitchen by merely observing what is happening in the dining area...

• can monitor what is happening with the entire reaction by merely observing what is happening with any one of the reagents

- · Like H2O2 on previous page, each reactant/product has : is own ROK curve ...
- ... but multiplication of each ROC by "!/coeff" g.us the same value : the ROR.

FIG. 12.5

(EX) Calculate Rate of Reaction from Rate of Change [12.2, modified] ¿Based on the following reaction (associated with FIG 12.3), the instantaneous reate of decomposition of H2O2 @ t = 11.1 hr is determined to be 3.20E-2 M/hr. What is the rate of reaction?

$$ROR = \frac{ROL}{e} \quad for any specie= \frac{1}{2} \frac{3.20 \times 10^2 M}{h} = \frac{1.60 \times 10^2 M/h}{h}$$

$$\frac{NOTE}{2} = \frac{1}{2} ROC_{H_2O_2} = + \frac{1}{2} ROC_{H_2O_2} = ROC_{O_2}$$

(1) The ROC for any space with a=1 necessary aguls the ROR.

- \hookrightarrow Chemical nature
- \hookrightarrow Physical state
- → Temperature
- \hookrightarrow Concentration
- └→ Catalyst

Factur affecting "gate" raising/lowering

The Chemical Nature of the Reacting Substances

- Fe much less reactive than same amount of Na
- Ca reacts with water to produce H2 at much slower rate than Na (actually, Na reacts explosively

· Physical state which affect surface area, effectively the concentration

(EX) Affect on Rxn Rate: Qualitative ¿Arrange the following in order of decreasing reaction rate, assuming an equal mass for each? course-ground Zn vs. Zn chunks vs. powdered Zn

poudered Zn) course-ground Zn) Zn chunks

Temperature of the Reactants

TREND: [↑] Temp [↑] Reaction Rate

RULE OF THUMB: Reaction rate doubles for about every increase in 10 °C

Concentrations of the Reactants

General Trend: 1 [conc], 1 kon Rote often varios for diff rxh. components <u>EC</u>: physphorus burns more rapidly in pure 02 (100 8 02) than it does in air (-20 8 02)

The Presence of a Catalyst

- def: Catalyst is substance which lowers the Eger without being consumed, thus <u>rexn Rate</u>
- · Calalyst works by providing alternate pathway or mechanism (one of lower East) for the rich to follow.

Rate Laws [12.3]

Rate Law Expression (RLE)

Determined experimentally

$$aA \rightarrow pnd$$

$$rate = k[A]^{x}[B]^{y}$$

$$Ro R \rightarrow t$$

$$rate = k[A]^{x}[B]^{y}$$

$$rate = -\frac{1}{a}\frac{d[A]}{dt}$$

$$rate = -\frac{1}{a}\frac{d[A]}{dt}$$

- overall Reaction Order = sum of the individual reaction orders
- recall earlier,

(EX) Determination of ROR and ROC

¿For the following reaction, answer the following:

$$2 N_2 O_5 \longrightarrow 4 N O_2 + O_2$$

(a) What is ROR in terms of ROC for each reactant

$$ROR = -\frac{1}{2} \frac{\Delta [P_2 O_7]}{\Delta T} = \frac{1}{4} \frac{\Delta [NO_2]}{\Delta T} = \frac{\Delta [O_2]}{\Delta T}$$

(b) What is the equation for the general RLE?

(c) If the RLE is known to be: rate = K[N2O5], what is the Order wrt [N2O5]?

x=1, .: lot Order

(d) If the RLE is known to be: rate = K[N2O5], what is the Overall Order?

Sum of all superscripts = 1, therefor, 1st Order overall

(EX) cont'd

$$2 N_2 O_5 \longrightarrow 4 NO_2 + O_2$$

(e) If we observed NO2 forming at a rate of 0.0072 M/s ...what is the ROC for N2O5?

$$\frac{\Box M(N_{205})}{S} = \frac{0.0072 M(W_{20})}{S} - 2 ml M_2 05}{S} = \frac{-0.0036 M(W_{205})}{S}$$

(e) ... what is the rate of reaction, as calculated from [N2O5]?

(EX) Write Rate Law Formula from Eq

(EX) Write Rate Law Formula from Eq [12.3] ¿For the following equation and associated rate law, what are the Orders for each component, and the overall Order?

1

$$egin{aligned} H_2(g)+2NO(g) &
ightarrow N_2O(g)+H_2O(g) \ rate&=k[N_RO]^2[H_2] \end{aligned}$$

Determining Rate Law from Initial Rates

$$aA + bB \rightarrow rate = k[A]^{x}[B]^{y} \leftarrow how to det h k, x, y ??$$

- · 3 unknowns, : need 3 equations
- · here, we will teach by excance ...

(EX) Method of Initial Rates

¿For the reation: $A + B \rightarrow C$

write the "full" rate law expression, including correct values and units for "x", "y", and "k", given the data:

(d) Using any of the three experiment's data
(have, choose Riw 2), only 'k" is unknown.

$$rate = k [A] \times [B]^{5}$$

rate 2 = $\frac{8.0 \le -4 M}{5} = k (0.01)^{3} M^{3} \cdot (0.02)^{2} M^{2}$
 $8.0 \le -4 M/5 = k 0.0010 M^{3} \times 0.040 M^{2}$
 $8.0 \le -4 M/5 = k \cdot 4.0 \le -5 M^{5}$
 $k = \frac{8.0E - 4 M}{s} \times \frac{1}{4.0E - 5 M^{5}} = \frac{20}{s M^{4}} = 20 M^{-} 4s^{-} 1$
rate = $k [A]^{\times} [B]^{5}$

$$rate = \frac{20}{M \cdot s} [AJ^3 [B]^2$$

(I would know this, if I were you)

$$rate = rac{M}{s} = rac{\Box}{\Box} rac{M^{overall}}{}$$

Order
$$4ir$$
 Unit of k
 $M_{si}^{i} = M_{si}^{M} M_{si}^{i'}$ M_{si}^{M}
 $1 \quad M_{si}^{i'} = I \quad M_{si}^{i'}$ $\frac{1}{s}$
 $5 \quad M_{si}^{i'} = M_{si}^{S}$ $\frac{1}{s}$
 $5 \quad M_{si}^{i'} = M_{si}^{S}$ $\frac{1}{s}$

Integrated Rate Law (IRL) expressions will only be considered for one-significant-reactant-only reactions in this course... reactions with two or more significant reactants are too math intensive

$$aA
ightarrow bB$$
 ron
 ron
 $rate = -rac{1}{a}rac{d[A]}{dt} = k[A]^x$

	6 •	three solutions p	rovided: x=0, x=1, x=2	
	IRLE		+ 42	
x = 0 X = 1 X = 2	$\begin{bmatrix} A \end{bmatrix} = -k$ $ L C A \end{bmatrix} = -k$ $ '/ C A \end{bmatrix} = +k$	大 · [A]。 天 · J. [A]。 ·大 · 1/[A]。	[A]o /2 ka Ju 2/ka (<u>=0.693</u>) 1/[A]o ka	4 2/13
	y = m	× + b	< liner forms & eys presented. (text presents in different form)	

1412 EXAM 1 🛛 💿 HW BONUS	1412 Solution of the second	1412 CHAPTER 10 HOMEWORK	1412 CHAPTER 11 HOMEWORK	1412 CHAPTER 12 HOMEWORK
0.00%				
0.00%				
39.58333%	58.33333%	100.00%		
0.00%				
0.00%	6	Hypothetica	al: if this studen	t did
12.50%	50.00%	- no more wo	ork, he/she woul	d-be
0.00%		awarded 3.	9 bonus points (on Exam 1
0.00%				
0.00%				
0.00%				
	,			Minestephenson

[A] = conc. of "A" at time "". [Ao] = int " " time = Ø. $-\frac{1}{\alpha}\frac{dEA}{dt} = kEA$ & { show your work} if x=1: ln[A] = -kt + ln[A] filx = + lnx + c integrated rate law $\frac{d[A]}{dt} = -k[A]$ $\frac{dEA]}{dt} = -KEA]^{*} \Longrightarrow$ Seperable Differential Equation $\int_{[A_{n}]}^{[A]} \frac{d[A]}{[A]} dt = \int_{0}^{t} -k dt$ Assume x=1 d[A] = -K[A] dt divide by [M] LA] $ln([A])_{[A_0]}^{[A]} = -K_{t} \int_{0}^{t} \ll Definite$ =-KEAJat then integrate from 0 to t /n[A] -/n[Ao] = -Kt + K(o) theorem of Calcabes In [A] = - Kt + In [A.] add +In [A.] & Simplify

Equations and Their Actions

- ► IRLEconc-to-time
- ► RLE conc-to-rate
- Arrhenius temp-to-rate

Determine Reaction Order via Graphing

NOTE: determination of Reaction Order by graphing will be taught in the lab

(EX) Calculate Decay Time from IRLE

¿lodine-131 is a radioactive isotope that is used to diagnose and treat some forms of thyroid cancer. lodine-131 decays to xenon-131 according to the equation below.

The decay is first-order with a rate constant of 0.138 d-1. All radioactive decay is first order. How many days will it take for 90% of the iodine-131 in a 0.500 M solution of this substance to decay to Xe-131?

(i) Relating [conc] to the A IRLA
(i) II
$$\rightarrow$$
 1^[3] Xe
(i) Let order
 $a=1$
 $h(II) = -k + h(II)$ o
 $h($

(EX) The Integrated Rate Law for a Second-Order Reaction

i The reaction of butadiene gas (C4H6) with itself produces C8H12 gas, per below eq. The reaction is second order with a rate constant equal to $5.76 \times 10-2$ L/mol/min under certain conditions. If the initial concentration of butadiene is 0.200 M, what is the concentration remaining after 10.0 min?

$$2 C_{a}H_{6}(g) \rightarrow C_{g}H_{8}(g)$$

$$\begin{bmatrix} \overline{2} \\ 1 \\ \overline{A} \end{bmatrix} = \begin{bmatrix} k + \frac{1}{2} \\ \overline{A} \end{bmatrix} = \frac{5.76 \times (\overline{0}^2 | 10_m + \frac{1}{2} | 10_m + \frac{1}{2000} | 10_m + \frac{1}{200} | 10$$

	Zero-Order	First-Order	Second-Order
rate law	rate = k	rate = $k[A]$	rate = $k[A]^2$
units of rate constant	M s ⁻¹	s ⁻¹	<i>M</i> ^{−1} s ^{−1}
integrated rate law	$\begin{bmatrix} A \end{bmatrix} = -kt + \\ \begin{bmatrix} A \end{bmatrix}_0$	in[A] = -kt + in[A] ₀	$\frac{1}{[A]} = kt + \left(\frac{1}{[A]_0}\right)$
plot needed for linear fit of rate data	[A] vs. t	In[A] vs. t	$\frac{1}{[A]}$ vs. t
relationship between slope of linear plot and rate constant	k = -slope	k = -slope	k = +slope
half-life	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{[A]_0 k}$

Summary of Rate Laws for Zero-, First-, and Second-Order Reactions

Collision Theory [12.5]

More CO₂ formation

Collision Theory Postulates () ROR 2 rate of collissions ROR 2 # collisions () Drientetion - of colliding species must allow them to become bould together () Energy - sufficient to cause mustual penetrations of value e shells No reaction

Ea and Transition State (TS)

- A TRANSITON STATE (TS) is very unstable and cannot be isolated...
- Not to be confused with an INTERMEDIATE
- A TS is, in a loose way, a morph somewhere between a reactant and a product
- A TS will define the height of the Energy of Activation (Ea)

Ea is mathematically described by the Arrhenius Equation

• The Arrhenius Equation is an important equation which arises a number of times in general chemistry... you should know it's basic forms, and be able to solve them

• the Arrhenius equation relates RATE (k) to TEMP

Extent of reaction

Why Increasing Temp increases the Rate of Reaction

(EX) Calcuate 'k' at for a temperature change ¿If 'k' for a 1st order reaction is 0.00916 /s at 0.0 °C and Ea = 88.0 kJ/mol, what is the value at 2.0 °C?

_

Some Basic Terms

Reaction mechanism - one or more step pathway to a product. Elementary reaction - each individual step Internaliste - stable species encountered along the new pathway.

$$\begin{array}{cccc}
0_3(g) &\longrightarrow & 0_2(g) + 0 & (\varsigma_{\xi} \ \pounds) \\
\underbrace{0 + & 0_3(g) &\longrightarrow & 20_2(g) \\
2 & 0_3(g) &\longrightarrow & 30_2(g) & (\varsigma_{\xi} \ \Im)
\end{array}$$

molecularity - # reactant species unimplecular reaction - single reactant species b: molecular reaction = two " specie termolecular reaction - three i specie Unimolecular Elementary Reactions

1-step reactions

· unimolealer ven/mechanism = single step or multistep.

A -> products vate = KCA3 elementary ("1-stype) X=1

- · We I specie + coeff=1, necoson: 1y X=1 > rate & concentration
- · For all uni module, presented IRLE's apply

$$\frac{Two types:}{W} (A + 0) \rightarrow C (B) 2A \rightarrow C$$

$$vote = k [A] [0] vote = k [A]^{2}$$

$$2X: NO_{2}G7 + (O(G) \longrightarrow NO(G) + (O_{2}G)$$

 $2HT (G) \rightarrow H_{2}G) + I_{2}G)$

Termolecular Elementary Reactions

Relating Reaction Mechanisms to Rate Laws

Key Question: Is the RDS the first step?

In general, when the rate-determining (slower) step is the first step in a mechanism, the rate law for the overall reaction is the same as the rate law for this step. However, when the rate-determining step is preceded by a step involving an equilibrium reaction, the rate law for the overall reaction may be more difficult to derive.

1412 EXAM 1 🛛 🕥 HW BONUS	1412 CHAPTER 20 HOMEWORK	1412 CHAPTER 10 HOMEWORK	1412 CHAPTER 11 HOMEWORK	1412 CHAPTER 12 HOMEWORK
0.00%				
0.00%				
59.58333%	58.33333%	100.00%	80.00%	6
0.00%				
0.00%	•			
12.50%	50.00%			
0.00%				
0.00%				
0.00%				
0.00%				

(EX) Determine the reaction mechanism ¿Given that the rate for the reaction: $2 O_3 \rightarrow 3 O_2$ derive a mechanism which is described by rate = $k[O_3]^2/[O_2]$?

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 2O_{3} \rightarrow 3O_{2} \\ \end{array} \\ \begin{array}{c} 2O_{3} \rightarrow 3O_{2} \\ \end{array} \\ \begin{array}{c} vet_{2} = \frac{k \left[O_{3}\right]^{2}}{Co_{2}} \end{array} \end{array}$$

$$\begin{array}{c} P_{voposl} \# 1 \\ \Lambda - step \end{array} \\ \begin{array}{c} 2O_{3} \end{array} \\ \begin{array}{c} 2O_{3} \rightarrow 3O_{2} \\ \end{array} \\ \begin{array}{c} vet_{2} = \frac{k \left[O_{3}\right]^{2}}{Co_{2}} \end{array} \end{array}$$

$$\begin{array}{c} P_{voposl} \# 1 \\ \Lambda - step \end{array} \\ \begin{array}{c} 2O_{3} \end{array} \\ \begin{array}{c} 2O_{3} \end{array} \\ \begin{array}{c} \rightarrow 3O_{2} \\ \end{array} \\ \begin{array}{c} \Lambda vet_{2} = k \left[O_{3}\right]^{2} \\ \times wrows \end{array}$$

$$\begin{array}{c} P_{voposl} \# 2 \\ 2 - skip \\ \Lambda - step \end{array} \\ \begin{array}{c} O_{3} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{3} \end{array} \\ \begin{array}{c} O_{3} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \begin{array}{c} O_{2} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \begin{array}{c} O_{2} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{3} \end{array} \\ \begin{array}{c} O_{2} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \begin{array}{c} O_{2} \end{array} \\ \begin{array}{c} P_{voposl} \end{array} \\ \begin{array}{c} H \\ \begin{array}{c} P_{s} p \\ O_{3} \end{array} \\ \begin{array}{c} O_{3} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \begin{array}{c} O_{2} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \begin{array}{c} O_{2} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \\ \end{array} \\ \begin{array}{c} P_{s} p \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \begin{array}{c} P_{s} p \\ O_{2} \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array}$$
 \\ \begin{array}{c} P_{s} p \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \end{array} \\ \begin{array}{c} P_{s} p \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} P_{s} p \end{array} \end{array} \\ \end{array} \\ \end{array} \\

[see next page for derivation] Derivation with the second step being the RDS (or slow) step . . .

(EX) Identify the Correct Mechanism ¿Which mechanism(s) is consistent with the following reaction:

$$NO + O_3 \rightarrow NO_2 + O_2$$
 rate = k[O_3][NO]

(a)
$$NO + O_3 \xrightarrow{RDS} NO_3 + D$$

 $NO_3 + O \longrightarrow NO_2 + O_2$
(b) $NO + O_3 \xrightarrow{1-3+p} NO_2 + O_2$
(c) $NO \xrightarrow{RDS} N + D$
 $O_3 \longrightarrow O_2 + D$
 $O_2 + N \longrightarrow NO_2$

Catalysis [12.7]

- · Calatysis is MT consumed Speads up both formand & reverse reactions.
- · Catalyst is Zerr order: (> rate = k L> vot dependent on ant of substrate (ant of material acted upon by catalyst)

Catalytic Convertor (Pt/NiO)

heterogeneous catalyst - catalysis and rich mixture are in different phases.

		\sim	
$2 \mu_{0_2} \longrightarrow \mu_2 + 20_2$	(S0x	9.6	:d
$0_2 + 2 c_0 \xrightarrow{p_{\pm}} 2 c_0_2$	UD.	=) va	in
$250_2 + 2C_9H_{18} \longrightarrow 16C0_2 + 18H_20$	(NOX		س

Enzymes — Nature's Catalysts

· Control most body reactions

homogeneous - same phase as reactants

Classes of	Enzymes and Their Functions
Class	Function
oxidoreductases	redox reactions
transferases	transfer of functional groups
hydrolases	hydrolysis reactions
lyases	group elimination to form double bonds
isomerases	isomerization
ligases	bond formation with ATP hydrolysis

Table 12.3

- The cour. of CO2+ water to carbour acid :3 slow, but in presence of CARBONK ANHYPRASE, rate 1 to conversion of more than I million CO2/second !!!

Relative Reaction Rate Questions

- These are typically "Before-After" type questions:
 "If this happens, then that occurs?"
 "If I change this, then the new value is ____?"
 "If this is the old value, then the new value will be ____?"
- Often, they can be easily solved using simple ratios.

(EX) Relative Reaction Rate ¿For the reaction described by: rate = $k[A][B]^2$ what happens to the reaction rate it...

Before-After type question

(a) "A" is tripled?	$\frac{\text{rote } 6}{\text{rate } a} = \frac{k \cdot 3 \cdot l^2}{k \cdot l \cdot l^2} = \frac{3}{l}$
(b) "B" is tripled?	$\frac{\text{rate } 6}{\text{rate } e} = \frac{k \cdot 1 \cdot 3^2}{k \cdot 1 \cdot 1^2} = \frac{9}{1}$
(c) both "A" and "B" are tripled?	$\frac{\text{rote } 6}{\text{rate } a} = \frac{k \cdot 3 \cdot 3^2}{k \cdot 1 \cdot 1^2} = \frac{27}{1}$

(EX) Calc Rate of Disappearance at different concentration ¿The rate of decompostion of $NO_2 = 5.4E-5$ M/s when [NO₂] = 0.0100 M.

(a) If the rate is given by: rate = $k[NO_2]$, what is the rate of disappearance at $[NO_2] = 0.00500 M$?

$$\frac{\text{Approad. #1}}{\text{rate}(nex)} = k[NO_2] = k(0.00500 \text{ M}) = \frac{0.0054 | 0.00500 \text{ M}}{S} = \frac{2.7E-5 \text{ M/s}}{2.7E-5 \text{ M/s}}$$

$$k = \frac{\text{rate}(nex)}{(NO_2]} = \frac{5.4E-5}{S} \frac{\text{M}}{0.00100} \text{ M} = \frac{0.0054}{s}$$

$$\frac{\text{Approad. #2}}{\text{rate}(nex)} = \frac{k(0.00500)}{k(0.00500)} = \frac{1}{2} = \frac{10000}{EA}$$

$$\frac{1}{2} = \frac{10000}{EA}$$

$$\frac{1}{2} = \frac{10000}{S} = \frac{1}{2} = \frac{10000}{S}$$

$$\frac{1}{2} = \frac{10000}{S} = \frac{10000}{S} = \frac{10000}{S} = \frac{10000}{S} = \frac{10000}{S}$$

(b) What would the new rate be if: rate = $[NO_2]^2$?

$$\frac{\text{rote}(\text{num})}{\text{rote}(\text{orig})} = \frac{k(0.00500)^2}{k(0.0100)^2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

$$\text{rote}(\text{new}) = \frac{1}{4} \frac{\text{rote}(\text{orig})}{4} = \frac{1}{4} \frac{5.42-5}{8} = \frac{1.4E-5}{8} \frac{$$

(EX) Calc relative reaction rates for concentration change

¿Given the rate expression: rate = $k[NO]^2[0_2]$

Two experiments were carried out at the same temperature. In EXP#2, the original EXP#1 concentration of NO is halved, and the concentration of oxygen doubled. This initial rate of EXP#2 is how many times that of EXP#1?

Since its a proportion, ASSUME the original
$$(9\times P \# 1)$$

concentrations of each reaget is 1.0M.
$$\frac{rate 2}{rate 1} = \frac{k \cdot (0.5)^2 \cdot 2}{k \cdot 1 \cdot 1} = \frac{k \cdot 0.5}{k \cdot 1} = \frac{0.5}{0.5} \text{ or } \frac{1/2}{1/2}$$