$$
\begin{gathered}
1412-\text { E1 } \\
\text { CH } 12-\text { Kinetics } \\
\text { Notes }
\end{gathered}
$$

Sam Rayburn Dam Analogy

- Energy Potential is favorable - but thane is a BARRIER... a "hump"
- Flow can be regulated by lovering/raising the gate.
- In human body, Enzymes "regulate the gate"

$$
\begin{gathered}
a A+b B \rightarrow c C+d D \\
-\underbrace{\frac{d[A]}{d t}}_{R O C},-\underbrace{\frac{d[B]}{d t}}_{R O C},+\underbrace{\frac{d[c]}{d t}}_{R O C},+\underbrace{\frac{d[D]}{d t}}_{R O C}
\end{gathered}
$$

... for example...

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(\mathrm{~g})
$$

Focusing on $\mathrm{H}_{2} \mathrm{O}_{2} \ldots$

Time (h)	$\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$\Delta\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$\Delta t(\mathrm{~h})$	Rate of Decomposition, $(\mathrm{mol/L/Lh})$
0.00	1.000	-0.500	6.00	-0.0833
6.00	0.500	-0.250	6.00	-0.0417
12.00	0.250	-0.125	6.00	-0.0208
18.00	0.125	-0.062	6.00	-0.0103
24.00	0.0625			

Terms

(i) Initial Rate
(ii) Instantaneous rate - any point on curve
(iii) Average vats - above: $0 \rightarrow 6 \mathrm{hr}$ inti $=0.0833 \mathrm{M} / \mathrm{h}$
$6 \rightarrow 24 \mathrm{~L} \mathrm{"}=0.0104 \mathrm{~m} / \mathrm{h}$

$$
\begin{gathered}
a A+b B \rightarrow c C+d D \\
\text { rate }=\underbrace{-\frac{1}{a} \underbrace{\frac{d[A]}{d t}}_{\text {ROC }}}_{\text {ROR }}=-\frac{1}{b} \frac{d[B]}{d t}=+\frac{1}{c} \frac{d[C]}{d t}=+\frac{1}{d} \frac{d[D]}{d t}
\end{gathered}
$$

... for example...

$$
2 \mathrm{NH}_{3}(g) \rightarrow 2 \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g)
$$

- All 3 species appear/disappear at different rates, but there is only one rate of reaction (after all, we are talking about a single reaction)

There may be several ROC's for any given reaction, but always on one ROR

$$
\underbrace{\begin{array}{c}
q \\
2 \text { bread }+1 \text { slice meat }+3 \text { pickles }
\end{array} \rightarrow \underbrace{3}_{\text {dining area }} 1 \text { sandwich }}_{\text {Kitchen area }}
$$

- Can monitor what is happening in the kitchen by merely observing what is happening in the dining area...
- can monitor what is happening with the entire reaction by merely observing what is happening with any one of the reagents
- Like $\mathrm{H}_{2} \mathrm{O}_{2}$ on previous pase, each reactat/product has its own Ross curve...
- ... bat multiplication of each RoC by "1/coeff" gus the same value: the ROR.

FIG. 12.5
(EX) Calculate Rate of Reaction from Rate of Change [12.2, modified] ¿Based on the following reaction (associated with FIG 12.3), the instantaneous reate of decomposition of H 2 O 2 @ $\mathrm{t}=11.1 \mathrm{hr}$ is determined to be $3.20 \mathrm{E}-2 \mathrm{M} / \mathrm{hr}$. What is the rate of reaction?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

$$
\begin{array}{rl}
\text { ROR } & =\frac{R O C}{a} \text { for any specie } \\
& =\frac{1}{2} \\
\hline 2 & 3.20 \times 10^{-2} \mathrm{M} \\
\mathrm{~h}
\end{array}=1.60 \times 10^{-2} \mathrm{M} / \mathrm{h} .
$$

NOTE: (大) $-\frac{1}{2} R^{\circ} C_{\mathrm{H}_{2} \mathrm{O}_{2}}=+\frac{1}{2} \mathrm{ROC}_{\mathrm{H}_{2 \mathrm{O}}}=\mathrm{ROC}_{\mathrm{O}_{2}}$
(b) The $R O C$ for any specie with $a=1$ necessary aquas the ROR.
\longrightarrow Chemical nature
\longrightarrow Physical state
\longrightarrow Temperature
\rightarrow Concentration
\longrightarrow Catalyst
Factur affecting
"gate" vaising/ lowering

The Chemical Nature of the Reacting Substances

- Fe much less reactive than same amount of Na
- Ca reacts with water to produce H 2 at much slower rate than Na (actually, Na reacts explosively

The State of Subdivision of the Reactants

- Physical state which affect surface area, effectively the concentration
(EX) Affect on Rxn Rate: Qualitative
¿Arrange the following in order of decreasing reaction rate, assuming an equal mass for each? course-ground Zn vs. Zn chunks vs. powdered Zn

$$
\begin{aligned}
& \text { \& } 1^{1^{5 T}-\text { add decress'ng }} \text { chevrous } \\
& \text { poudered } Z_{n}>\text { course-ground } z_{n}>z_{n} \text { chunks }
\end{aligned}
$$

Temperature of the Reactants
TREND: \uparrow Temp \uparrow Reaction Rate

RULE OF THUMB: Reaction rate doubles for about every increase in $10^{\circ} \mathrm{C}$

Concentrations of the Reactants
General Trend: \uparrow [canc], \uparrow hen Rate
often varies for diff $r \times h$. components
E6: phosphorus burns move rapidly in pure $\mathrm{O}_{2}\left(100\right.$ \& $\left.\mathrm{O}_{2}\right)$ than it dies in air $\left(\begin{array}{lll}20 & 8 & \left.\mathrm{O}_{2}\right)\end{array}\right.$

The Presence of a Catalyst
def: Catalyst is substance which lowers the $E_{\text {tet }}$ without being consumed, thus $\uparrow R_{x n}$ Rate

- Calalyst works by providing alternate pathway or mechanism (one w/ lower Eact) for the nan to follow.

Rate Laws [12.3]

Rate Law Expression (RLE)

- Determined experimentally

$$
\begin{aligned}
& a A+b B \rightarrow \text { pad } \\
& \text { rate }=k[A]^{x}[B]^{y} \\
& R O R \rightarrow \text { rate law constant }
\end{aligned}
$$

$a A \rightarrow p u d$
rate $=-\frac{1}{a} \frac{d[A]}{d t}$

- overall Reaction Order = sum of the individual reaction orders
- recall earlier,
(EX) Determination of ROR and ROC
¿For the following reaction, answer the following:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

(a) What is ROR in terms of ROC for each reactant

$$
R O R=-\frac{1}{2} \frac{\Delta\left[N_{2} O_{5}\right]}{\Delta T}=\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta T}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta T}
$$

(b) What is the equation for the general RLE?

(c) If the RLE is known to be: rate $=\mathrm{K}[\mathrm{N} 2 \mathrm{O} 5]$, what is the Order wot [N2O5]?

$$
x=1, \therefore \text { Sst Order }
$$

(d) If the RLE is known to be: rate $=\mathrm{K}[\mathrm{N} 2 \mathrm{O} 5]$, what is the Overall Order?

Sum of all superscripts $=1$, therefor, 1 st Order overall

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

(e) If we observed NO 2 forming at a rate of $0.0072 \mathrm{M} / \mathrm{s} \ldots$ what is the ROC for N 2 O 5 ?

$$
\begin{array}{l|l}
\square \mu\left(N_{2} 05\right) \\
S
\end{array}=\begin{array}{c|c}
0.0072 \mu\left(\omega_{2} 0\right) & -2 \mathrm{mal} \mu_{2} \mathrm{O}_{5} \\
\hline S & 4{\mathrm{~mol} \mathrm{~N}_{2}}^{\square}
\end{array}=\frac{-0.0036 \mu\left(\mu_{205}\right)}{S}
$$

(e) ... what is the rate of reaction, as calculated from [N2O5]?
 overall Order?

$$
\begin{aligned}
& \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g) \\
& \text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}\right]^{2}\left[\mathrm{H}_{2}\right]
\end{aligned}
$$

Determining Rate Law from Initial Rates

$$
a A+b B \rightarrow \underset{\text { rate }}{ }=k[A]^{x}[B]^{y} \longleftarrow \text { how to det'n " } k, x, y^{\prime \prime} \text { ? }
$$

- 3 unknowns, \therefore meed 3 equations
- here, we will teach by example...
(EX) Method of Initial Rates
¿For the reaction:

$$
A+B \rightarrow C
$$

write the "full" rate law expression, including correct values and units for " x ", " y ", and " k ", given the data:

(a) know rate $=k[A]^{x}[B]^{y}$
(b) $\frac{\text { rate } 2}{\text { rate } 1}=\frac{8.0 \varepsilon-4}{q^{2.0 \varepsilon-4}}=\frac{K[/ A]^{x}[B]^{y}}{1 /\left[[A, A]^{x}[B]^{3}\right.}=\frac{[2.0]^{y}}{[1.0]^{y}}$
$4 \quad=2^{y} e y=2$
(c) $\frac{\text { rate } 3}{\text { rate } 2}=\frac{256 E-4}{8 \varepsilon-4}=\frac{\nless[0.2]^{x}(0.4)^{2}}{K[0.1]^{\times}(0.2)^{2}} e 32=2^{x}\left(\frac{0.16}{0.04}\right)$

$$
\text { cont'd next page } 5
$$

$$
\begin{aligned}
32 & =2^{x} \cdot 4 \\
8 & =2^{x} \\
x & =3
\end{aligned}
$$

(d) Using any of the three experiment's data (have, choose Rus 2), on y ' k ' is unknown.

$$
\begin{aligned}
& \text { rate }=\frac{?}{k}[A]^{\prime}[B]^{\prime} \\
& \text { rate } 2=\frac{8.0 \varepsilon-4 \mu}{5}=k(0.01)^{3} \mu^{3} \cdot(0.02)^{2} \mu^{2} \\
& 8.0 \varepsilon-4 \mathrm{M} / \mathrm{s}=k 0.0010 \mathrm{M}^{3} \times 0.040 \mathrm{~m}^{2} \\
& 8.0 \varepsilon-4 \mu / s={\underset{q}{l}}_{k}^{k} \cdot 4.0 \varepsilon-5 \mu^{5} \\
& k=\frac{8.0 E-4 M}{s} \times \frac{1}{4.0 E-5 M^{5}}=\frac{20 .}{s M^{4}}=20 M^{-} 4 s^{-} 1 \\
& \text { rate }=k[A]^{x}[B]^{y} \\
& \text { rate }=\frac{20}{M \cdot s}[A]^{3}[B]^{2}
\end{aligned}
$$

(I would know this, if I were you)

$$
\text { rate }=\frac{M}{s}=\frac{\square}{\square} \frac{M^{\text {overall }}}{}
$$

$$
\text { rate }=K M^{\text {oran }}
$$

Integrated Rate Law (IRL) expressions will only be considered for one-significant-reactant-only reactions in this course... reactions with two or more significant reactants are too math intensive

$$
\text { rate }=-\frac{1}{\frac{1}{a} \overbrace{\frac{d[A]}{R_{0} c}}^{d t}}=k[A]^{x}
$$

\downarrow three solutions provided: $\mathrm{x}=0, \mathrm{x}=1, \mathrm{x}=2$

1412 \| EXAM 1 HW BONUS	1412 CHAPTER 20 HOMEWORK	1412\| CHAPTER 10 HOMEWORK	1412 \| CHAPTER 11 HOMEWORK	1412 \| CHAPTER 12 HOMEWORK
0.00\%	--	--	--	--
0.00\%	--	--	--	--
39.58333\%	58.33333\%	100.00\%	(1)	--
0.00\%		--	--	--
0.00\%	(1)	Нуро	if this s	did
12.50\%	50.00\%	-- no mo	rk, he/she	d-be
0.00\%	--	awarc	bonus poir	n Exam
0.00\%	--	--	--	--
0.00\%	--	--	--	--
0.00\%	--	--	--	--

Equations and Their Actions

- IRLE........................ conc-to-time
- RLE conc-to-rate
- Arrhenius temp-to-rate

$a A \rightarrow ?$	
$A=-k a t+A_{o}$	\longmapsto 0th order
$\ln A=-k a t+\ln A_{o}$	\longmapsto 1st order
$1 / A=+$ kat $+1 / A_{o}$	\longmapsto 2nd order

IRLE

rate $=k[A]^{x}[B]^{y}=-\frac{1}{a} \frac{d[A]}{d t}=-\frac{1}{b} \frac{d[B]}{d t} \quad$| conc | time |
| :--- | :--- |
| rate | |
| Arrhenius | |
| $k=A e^{-E_{a} / R T}$ | |

Determine Reaction Order via Graphing

NOTE: determination of Reaction Order by graphing will be taught in the lab
(EX) Calculate Decay Time from IRLE
¿lodine-131 is a radioactive isotope that is used to diagnose and treat some forms of thyroid cancer. lodine-131 decays to xenon-131 according to the equation below.

The decay is first-order with a rate constant of $0.138 \mathrm{~d}-1$. All radioactive decay is first order. How many days will it take for 90% of the iodine -131 in a 0.500 M solution of this substance to decay to Xe-131?

Ratio
(i) Relating [conc] to time
(iv) \qquad ${ }_{1}^{131} \mathrm{I} \rightarrow 1^{131} \mathrm{Ke}$ * $a=1$

$$
\begin{aligned}
& \begin{array}{l}
\ln [I]=-k t+\mu[I]_{0} \\
v \\
\mu \frac{[I]_{0}}{[I]}=+k \cdot t \longrightarrow \ln \left(\frac{100}{10}\right)=\frac{0.138}{} 11 \cdot k
\end{array} \\
& \ln 10=0.138 / d \cdot k \\
& 2.30=0.138 / d \cdot k \\
& 16.7 d=k
\end{aligned}
$$

(EX) The Integrated Rate Law for a Second-Order Reaction
¿The reaction of butadiene gas (C4H6) with itself produces C 8 H 12 gas, per below eq. The reaction is second order with a rate constant equal to $5.76 \times 10-2 \mathrm{~L} / \mathrm{mol} / \mathrm{min}$ under certain conditions. If the initial concentration of butadiene is 0.200 M , what is the concentration remaining after 10.0 min ?

$$
2 \mathrm{C}_{4} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{88} \mathrm{H}_{8}(\mathrm{~g})
$$

$?$

$$
\begin{aligned}
& \frac{1}{[A]}=k++\frac{1}{[A]_{0}}=\frac{5.76 \times 10^{-2} 10 \mathrm{~m}}{M \mathrm{~m}}+\frac{1}{0.200 M}= \\
&=\frac{0.576}{M}+\frac{1}{0.200 \mu}=\frac{0.576}{M}+\frac{5.00}{M}=\frac{5.576}{M} \\
& \frac{1}{[A]}=\frac{5.576}{M} \longrightarrow \frac{[A]}{1}=\frac{M}{5.576} \rightarrow[A]=0.179 M
\end{aligned}
$$

Summary of Rate Laws for Zero-, First-, and Second-Order Reactions

	Zero-Order	First-Order	Second-Order
rate law	rate $=k$	rate $=k[A]$	rate $=k[A]^{2}$
units of rate constant	$M \mathrm{~s}^{-1}$	$\mathrm{~s}^{-1}$	$M^{-1} \mathrm{~s}^{-1}$
integrated rate law	$[A]=-k t+$ $[A]_{0}$	$\ln [A]=-k t+$ $\ln [A]_{0}$	$\frac{1}{[A]}=k t+\left(\frac{1}{[A]_{0}}\right)$
plot needed for linear fit of rate data	$[A]$ vs. t	$\ln [A]$ vs. t	$\frac{1}{[A]}$ vs. t
relationship between slope of linear plot and rate constant	$k=-$ slope	$k=-$ slope	$k=+$ slope
half-life	$t_{1 / 2}=\frac{[A]_{0}}{2 k}$	$t_{1 / 2}=\frac{0.693}{k}$	$t_{1 / 2}=\frac{1}{[A]_{0} k}$

Collision Theory Postulates
(1) ROR \propto rate of collisions

(2) Orientation - of colliding species must
allow them to become bonded together
(3) Energy - sufficient to cause mutual penetrations of valence shells

No reaction

More CO_{2} formation

- A TRANSITON STATE (TS) is very unstable and cannot be isolated...
- Not to be confused with an INTERMEDIATE
- A TS is, in a loose way, a morph somewhere between a reactant and a product
- A TS will define the height of the Energy of Activation (Ea)

Ea is mathematically described by the Arrhenius Equation

- The Arrhenius Equation is an important equation which arises a number of times in general chemistry... you should know it's basic forms, and be able to solve them

Extent of reaction - the Arrhenius equation relates RATE (k) to TEMP

Why Increasing Temp increases the Rate of Reaction
\longrightarrow Higher temp, move can jump the wall.

(EX) Calculate ' k ' at for a temperature change if ' k ' for a 1 st order reaction is $0.00916 / \mathrm{s}$ at $0.0^{\circ} \mathrm{C}$ and $\mathrm{Ea}=88.0 \mathrm{~kJ} / \mathrm{mol}$, what is the value at $2.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \text { Easier math } \\
& \text { if higher temp }
\end{aligned}
$$

logic check: $\uparrow T, \downarrow \varepsilon_{a} / k T, \uparrow-\varepsilon_{a} / R T, \uparrow e^{-\varepsilon_{d} / n T}, \uparrow k$

$$
\begin{aligned}
& \ln \frac{k}{k^{\prime}}=\frac{E a}{R}\left(\frac{1}{T^{\prime}},-\frac{1}{T}\right) \\
& \ln \frac{k}{0.00916}=\begin{array}{c|c}
88,000 \mathrm{~J} & \operatorname{mil} \cdot \mathrm{~K} \\
\operatorname{mol} & 8.314 \mathrm{~J}
\end{array}\left(\frac{1}{273}-\frac{1}{275}\right)=0.282 \\
& \frac{k}{0.00916}=e^{0.282}=1.32 \\
& k=(1.32)(0.00916)=0.0121 / \mathrm{s}
\end{aligned}
$$

Some Basic Terms

Reaction mechanism - one or move step pathway to a product. Elementary reaction - each individual step Intermedite - stable species encountered along the ran pathway.

$$
\left.\begin{array}{rl}
\mathrm{O}_{3}(\mathrm{~g}) & \longrightarrow \mathrm{O}_{2}(9)+0 \\
0+\mathrm{O}_{3}(9) & \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g})
\end{array} \quad \begin{array}{l}
\left(\varepsilon_{8} 1\right) \\
2 \mathrm{O}_{3}(9)
\end{array} \quad \begin{array}{l}
\left(\varepsilon_{8}\right)
\end{array}\right)
$$

Unimolecular Elementary Reactions
1-step reactions

- unimolealar van/mechanism = single step a multistep.
$A \rightarrow$ products

$$
\begin{aligned}
& \text { vate }=K[A] \quad \begin{array}{l}
\text { elementany } \\
\left.(\prime \prime 1-s t e)^{*}\right)
\end{array}
\end{aligned}
$$

$$
x=1
$$

- $B / C 1$ sparie + coeff $=1$, necssanily $X=1$
\hookrightarrow rate \propto concentration
- For all uni mobalar, presentey IRLE's apply

Bimolecular Elementary Reactions
Two types: $(A A+D \rightarrow C$
(ii) $2 A \rightarrow C$

$$
\text { rite }=k[A][B] \quad \text { rate }=k[A]^{2}
$$

Note: for 1-step (islementz") reactions, $x_{y}=$ coefficients!!! but... limited to 1-step, for which one can NoT tell just by looking at the equation.

$$
\text { ix: } \begin{aligned}
\mathrm{NO}_{2}(g)+(O(g) & \longrightarrow N O(g)+\left(\mathrm{O}_{2}\left(\mathrm{~g}_{\mathrm{g}}\right)\right. \\
2 \mathrm{HI}\left(\mathrm{C}_{2}\right) & \rightarrow \mathrm{H}_{2}(g)+I_{2}(\mathrm{~g})
\end{aligned}
$$

Termolecular Elementary Reactions

- rare - unusual that 3 specie collide at the

$$
\begin{array}{ll}
\text { same, exact time } & \\
\text { Lx } 2 N O+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} & \text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \\
-2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCe} & \text { rate }=k\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.
\end{array}
$$

Relating Reaction Mechanisms to Rate Laws

- epicenter = rate-limiting step (a note-determining step)...determinas the kinetics
- Ret'n mechanise /RDS by matching proposed elenertuy steps, one of those being the lbs, to measured kinetics.

$$
e x \quad 3
$$

$$
\begin{aligned}
& \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \\
& >225^{\circ} \mathrm{C} \quad \begin{array}{l}
\text { observed }
\end{array}<225^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\text { rate } & =k\left[\mathrm{NO}_{2}\right]^{2} \\
& =k\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{2}\right]
\end{aligned} \\
& \downarrow \text { ROS incolus } 2 \times \mathrm{NO}_{2} \text { 's } \\
& \mathrm{NO}_{2}+\mathrm{NO}_{2} \xrightarrow{\text { RDS }} \text { puduls } \\
& \begin{array}{l}
\text { propsese mech. to inchle } \\
\text { this step }
\end{array}
\end{aligned}
$$

Key Question: Is the RDS the first step?
In general, when the rate-determining (slower) step is the first step in a mechanism, the rate law for the overall reaction is the same as the rate law for this step. However, when the rate-determining step is preceded by a step involving an equilibrium reaction, the rate law for the overall reaction may be more difficult to derive.

1412 \| EXAM 1 HW BONUS	1412 \| CHAPTER 20 HOMEWORK	T-5 days		
		1412 \| CHAPTER 10 HOMEWORK	1412 \| CHAPTER 11 HOMEWORK	1412 CHAPTER 12 HOMEWORK
0.00\%	--	--	--	--
0.00\%	--	--	--	--
59.58333\%	58.33333\%	100.00\%	80.00\%	(1)
0.00\%	--	--	--	--
0.00\%	(1)	--	--	--
12.50\%	50.00\%	--	--	--
0.00\%	--	--	--	--
0.00\%	--	--	--	--
0.00\%	--	--	--	--
0.00\%	--	--	--	--

(EX) Determine the reaction mechanism
¿ Given that the rate for the reaction: $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
derive a mechanism which is described by rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]$?

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{l}
\text { revisit earle } \\
\text { reaction }
\end{array} \\
\downarrow
\end{array} \quad \begin{array}{c}
2 \mathrm{O}_{3} \\
\rightarrow 3 \mathrm{O}_{2}
\end{array} \quad \text { vat }=\frac{k\left[\mathrm{O}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]} \\
& \underset{\substack{\text { vopose } \\
\text { N-step }}}{\text { Pf }} \quad 2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2} \quad \text { Arete }=\underset{\text { wrong }}{k\left[\mathrm{O}_{3}\right]^{2}} \\
& \begin{aligned}
\text { Proposal } H 2
\end{aligned} \quad \mathrm{O}_{3} \xrightarrow{\text { RPS }} \mathrm{O}_{2}+0 \quad \begin{array}{l}
\text { write }=k\left[\mathrm{O}_{3}\right] \\
2 \text {-step, } 1 S I=R D S
\end{array} \quad \mathrm{O}_{3}+0 \longrightarrow \text { wrong } \\
& \text { Propel \#3 } \\
& \text { 2. Step, } 2 \sim \text { R }=\text { RDS } \quad \mathrm{O}_{3}+0 \xrightarrow{\mathrm{O}_{3} \xrightarrow{\text { RDS }} \mathrm{O}_{2}+0} 2 \mathrm{O}_{2} \\
& \checkmark \text { correct } \\
& s_{\text {rate }}=\left[\mathrm{O}_{3}\right]^{2 /\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

[see next page for derivation]
(1) FAST RSACTION

$$
\begin{array}{rlrl}
\text { rate } 1 f & =\text { rate } \lambda_{k} \\
& =k_{1 r}\left[O_{2}\right][0] & & =k_{2}[0]\left[0_{3}\right] \\
k_{1 f}\left[0_{3}\right] & \psi \\
{[0]} & =\frac{k_{1 f}\left[0_{3}\right]}{k_{1 r}\left[0_{2}\right]} & =\frac{k_{2} k_{1 f}\left[0_{3}\right]\left[0_{3}\right]}{k_{1 r}\left[0_{2}\right]} \\
& =k \frac{\left.k 0_{3}\right]^{2}}{\left[0_{2}\right]}
\end{array}
$$

(EX) Identify the Correct Mechanism
¿Which mechanism(s) is consistent with the following reaction:

$$
\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \quad \text { rate }=\mathrm{k}\left[\mathrm{O}_{3}\right][\mathrm{NO}]
$$

(a) $\begin{aligned} \mathrm{NO}+\mathrm{O}_{3} \\ \mathrm{NO}_{3}+\mathrm{O}\end{aligned} \quad \xrightarrow{\mathrm{RDS}} \mathrm{NO}_{3}+\mathrm{O}$

(b) $\mathrm{NO}+\mathrm{O}_{3} \xrightarrow{\text { l-stp }} \mathrm{NO}_{2}+\mathrm{O}_{2}$
(c) $\begin{aligned} & \mathrm{NO} \\ & \mathrm{O}_{3} \xrightarrow{\mathrm{RPS}} \mathrm{N}+0 \\ & \mathrm{O}_{2}+\mathrm{O}+0\end{aligned} \quad X$

- Calatysis is NT consumed
- Speals up both formard a keverse veactors.
- Catabor is zewo order:
\longrightarrow rate $=k$
\rightarrow not deperdit on aut of substute (aut of materiol acted upon by catalyst)
heterogeneors coutalyst - catalys, and ixh mixtere are in different phases.

Enzymes - Nature's Catalysts

- Contul most bods reactions
- homogeneous - same phase as reactants

Classes of Enzymes and Their Functions

Class	Function
oxidoreductases	redox reactions
transferase	transfer of functional groups
hydrolases	hydrolysis reactions
lyases	group elimination to form double bonds
isomerases	isomerization
ligases	bond formation with ATP hydrolysis

(a) Lock-and-key model

(b) Induced fit mode

Table 12.3

- The comr. of $\mathrm{CO}_{2}+$ water to carbonic acid is slow, but in presence of armonk AnHYPRASE, rate \uparrow to conversion of more than 1 million $\mathrm{CO}_{2} /$ second !!!
- ZZZ
\longrightarrow ZZZ
\longrightarrow ZZZ
- ZZZ

Relative Reaction Rate Questions

- These are typically "Before-After" type questions:
\hookrightarrow "If this happens, then that occurs?"
\hookrightarrow "If I change this, then the new value is \qquad ?"
\hookrightarrow "If this is the old value, then the new value will be \qquad ?"
- Often, they can be easily solved using simple ratios.
(EX) Relative Reaction Rate
¿For the reaction described by: rate $=k[A][B]^{2}$
what happens to the reaction rate it...
(a) " A " is tripled?

$$
\frac{\text { rate }_{6}}{\text { rate } a}=\frac{k \cdot 3 \cdot 1^{2}}{k \cdot 1 \cdot 1^{2}}=\frac{3}{l}
$$

(b) " B " is tripled?

$$
\frac{\text { rate }_{6}}{\text { rate a }}=\frac{k \cdot 1 \cdot 3^{2}}{k \cdot 1 \cdot 1^{2}}=\frac{q}{l}
$$

(c) both " A " and " B " are tripled?

$$
\frac{\text { rate }_{6}}{\text { rate a }}=\frac{k \cdot 3 \cdot 3^{2}}{k \cdot 1 \cdot 1^{2}}=\frac{27}{l}
$$

(EX) Calc Rate of Disappearance at different concentration
¿The rate of decomposition of $\mathrm{NO}_{2}=5.4 \mathrm{E}-5 \mathrm{M} / \mathrm{s}$ when $\left[\mathrm{NO}_{2}\right]=0.0100 \mathrm{M}$.
(a) If the rate is given by: rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]$, what is the rate of disappearance at $\left[\mathrm{NO}_{2}\right]=0.00500 \mathrm{M}$?

$$
\begin{aligned}
& \text { Approach \#1 }
\end{aligned}
$$

$$
\begin{aligned}
& k=\frac{\operatorname{rate}(\mathrm{on} 16-)}{\left[\mathrm{NO}_{2}\right]}=\frac{5.4 E-5 \mathrm{M}}{} \begin{array}{l}
\mathrm{S} \\
\hline \mathrm{~S} \\
0.00100 \mathrm{M}
\end{array}=\frac{0.0054}{\mathrm{~S}}
\end{aligned}
$$

Approach H_{2} (ratio: rate $=k\left[\mathrm{NO}_{2}\right]$)

$$
\frac{\operatorname{rate} \text { (new) }}{\operatorname{rate} \text { (org) }}=\frac{k(0.00500)}{k(0.0100)}=\frac{1}{2}=\frac{[A]}{[A]_{0}}
$$

(b) What would the new rate be if: rate $=\left[\mathrm{NO}_{2}\right]^{2}$?

$$
\begin{aligned}
& \frac{\operatorname{rate}(\text { new })}{\text { rate (orig) }}=\frac{k(0.00500)^{2}}{k(0.0100)^{2}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \text { rate (new) }=\frac{1}{} \text { rate (orris) }=\begin{array}{l|l|}
\hline 4 & 5.4 \varepsilon-5 \mu \\
\hline 4 & \mathrm{~S}
\end{array} 1.4 E-5 \mathrm{M} / \mathrm{s}
\end{aligned}
$$

(EX) Calc relative reaction rates for concentration change
¿Given the rate expression: rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
Two experiments were carried out at the same temperature. In EXP\#2, the original EXP\#1 concentration of NO is halved, and the concentration of oxygen doubled. This initial rate of EXP\#2 is how many times that of EXP \#1?

Since its a proportion, Assume the original ($\varepsilon \times p \neq 1$)
concentrators of each reagent is 1.0 M .

$$
\frac{\operatorname{rate} 2}{\operatorname{rate} 1}=\frac{k \cdot(0.5)^{2} \cdot 2}{k \cdot 1 \cdot 1}=\frac{k \cdot 0.5}{k \cdot 1}=0.5 \text { or } 1 / 2
$$

