$$
\begin{gathered}
1412-\text { E2 } \\
\text { CH } 13 \text { - Equilibrium } \\
\text { Notes }
\end{gathered}
$$

CHAPTER 13 CHEMICAL EQUILIBRIA

Introduction [13.1]

Basic idea of this chapter is to set up equations which all one to calculate the concentrations of reactants and products after a reaction has "run it's course" (after the rate is no longer changing)

One-way versus Equilibrium Reactions

- For some reactions virually all reactants are converted to product ("one way")
- For other reactions, only part of the reactants are converted to products ("equilibrium")

One-way	$A \rightarrow B$
Dynamic Equilibrium	$A \rightleftharpoons B$

e.g., PHASE CHANGES are often in equilibrium

$$
\mathrm{Br}_{2}(\mathrm{l}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{~g})
$$

Reaction Quotients \& Equilibrium Constants [13.2]

$$
a A+b B \rightleftharpoons c C+d D \quad \begin{array}{ll}
\text { molar } \\
\text { concentators }
\end{array}
$$

$$
\text { reaction quotient }=Q_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \quad Q_{c}=\frac{[P R O D U C T S]^{p}}{[R E A C T A N T S]^{r}}
$$

$$
\begin{gathered}
\ldots \text { for example... } \\
4 \mathrm{HN}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
Q_{c}=\frac{\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{7}}
\end{gathered}
$$

Reaction Quotient vs. Equilibrium Constant

- At equilibrium, the 'REACTION QUOTIENT' is referred to as the EQUILIBRIUM CONSTANT, which is assigned the variable "Kc" (rather than Qc)

Caveat!!!
Kc changes with temperature

Shifting toward Equilibrium: Kc vs. Qc

- One way to know if a reaction is at equilibrium is to compare its calculated Qc value to the reactions known Kc value (this assumes Kc is known)
\longrightarrow if Kc>Qc, then the reaction will shift to the right (the measured situation does not have enough product)
\leftrightarrows if Kc < Qc, then the reaction will shift to the left (the measured situation has too much product)
- Remember, Qc will change until it equals Kc ; that is, the reaction will keep working toward equilibrium

memory device

\rightarrow If $K=1$, then [PRODUCTS] ${ }^{\wedge} p$ is equal to [REACTANTS] ${ }^{\wedge} r$ \rightarrow If $K<1$, then [PRODUCTS] $\wedge p$ is less than [REACTANTS] $\wedge r$ \hookrightarrow If $K>1$, then [PRODUCTS] $\wedge p$ is more than [REACTANTS] ${ }^{\wedge} r$

"K"《1

$\frac{[P P O D]}{[R a s C T]}$ large

- In industry, companies tend to want to make product, and so desire reactions for which K is as large as possible, which means little reactant is left over (unreacted). This translates to more product to sell and less waste.
(EX) K vs. Q - Reaction Shift
¿If Kc for a reaction is 65.0, but the current concentrations of reactant and products give $\mathrm{Q}=38.1$, what will happen to the reaction mixture: it will shift to the right; it will shift to the left; or it will remain as it is?

$$
\underset{65.0}{K_{c}}>{ }_{38.1}^{Q} \quad \therefore \text { Shift } r \times n \text { to right }
$$

- Need to know next three sections to be able to write expressions for "K" -

Activity vs. Concentration

- Activity and Concentration are related, but they are not exactly the same...
- ACTIVITY is the "effective concentration" at specified conditions
\hookrightarrow activities are dimensiónless
\longrightarrow for DILUTE SOLUTIONS, activity ~ [conc]
\hookrightarrow for PURE SOLIDS AND LIQUIDS (consensed phases), activity $=1$
\longrightarrow for BULK SOLVENTS, assume activity = 1

NOTE:
recognizing the above unity activity situations can greatly simply some of the calculations to come... factors of " 1 " can oft be ignored, simplying many equations which would otherwise be more complicated

Homogeneous Equilibria

- All reactants and products are present in the same phase
- Two types
\hookrightarrow all liquid solution
\hookrightarrow all gas solution
- Review
$\longrightarrow(s)=$ solid, activity $=1$
$\longrightarrow(I)=$ liquid, activity = 1
$\longrightarrow(\mathrm{g})=$ gas
$\longrightarrow(\mathrm{aq})=$ aqueous, activity $=$ [conc] if dilute

Partial Pressure vs. Concentration

- Because Partial Pressure is proportional to [CONC], equilibrium constants for solutions containing gases can be derived using pressure

$$
P V=n R T \quad \Longleftrightarrow \quad P=\frac{n}{V} R T \quad \text { e } \quad P V=M R T \quad \text { e } \quad P \propto M
$$

Generic expressions: Can write GAS solutions in terms of Partial Pressure or Concentration

$$
\begin{gathered}
\mathrm{aA}(\mathrm{~g}) \rightleftharpoons \mathrm{bB}(\mathrm{~g})+\mathrm{cC}(\mathrm{~g}) \\
K_{p}=\frac{\left(P_{B}\right)^{b}\left(P_{C}\right)^{c}}{\left(P_{A}\right)^{a}} \quad K_{c}=\frac{[B]^{b}[C]^{c}}{[A]^{a}}
\end{gathered}
$$

Caveat!!!

$$
K_{p} \neq K_{c}
$$

(EX) Expressions for K
¿Write expressions for Kc and/or Kp for the following reactions?

$$
2 \mathrm{HgO}_{\mathrm{g}}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(g) \quad K_{L}=\left[\mathrm{O}_{2}\right] \quad K_{p}=P_{O_{2}}
$$

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightleftharpoons\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{~s})
$$

$$
K_{c}=\frac{1}{\left[\mathrm{NH}_{3}\right]^{2}}=\left[\mathrm{NH}_{3}\right]^{-2}
$$

$$
K_{r}=\frac{1}{\left(P_{\nu H_{3}}\right)^{2}}=\left(P_{\mu H_{3}}\right)^{-2}
$$

(EX) Expressions for K
¿Write expressions for Kc and/or Kp for the following reactions?

In Openstax...
$-\mathrm{PbCl}_{2}(s) \rightleftharpoons \mathrm{Pb}^{2+}(\mathrm{O})+2 \mathrm{Cr}(q)$

$$
K_{c}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}
$$

- $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})$
$K_{c}=1 /\left[\mathrm{CO}_{2}\right]$
$0(\mathrm{Cg})+2 \mathrm{~S}(\mathrm{~g}) \rightleftharpoons \mathrm{CS}_{2}(\mathrm{~g})$
$K_{c}=\left[C s_{2}\right] /[s]^{2}$
- $\mathrm{Br}_{2}(\mathrm{l}) \rightleftharpoons \mathrm{Br}_{2}(\mathrm{~g})$
$K_{c}=\left[\mathrm{Br}_{2}\right]$
- $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})$
$K_{p}=1 / P_{\mathrm{CO}_{2}}$
- $C(g)+2 S(g) \rightleftharpoons C S_{2}(g)$

$$
K_{p}=P_{c s_{2}} /\left(P_{s}\right)^{2}
$$

$\mathrm{Kc}($ forward) vs. Kc (reverse)

$$
\begin{gathered}
A \stackrel{f}{\stackrel{f}{\rightleftharpoons}} B \quad K_{f}=\frac{[B]}{[A]} \xrightarrow{f l i p} K_{r}=\frac{[A]}{[B]}=\frac{1}{K_{f}} \\
K_{c, \text { reverse }}=\frac{1}{K_{c, \text { forward }}}
\end{gathered}
$$

Kc vs. Kp

$$
K_{p}=K_{\xi}(R T)\left(\begin{array}{l}
\text { toftl moles } \\
\text { Pcon side }
\end{array} \text { total miless } R \& A C \text { side }\right) ~ B C E \text { coefficients }
$$

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

(EX) Calculate Kp from Kc
¿The equilibrium constant for the Haber Process at $500^{\circ} \mathrm{C}$ is 0.286 . What is Kp ??

$$
\underbrace{\mathrm{N}_{2}(g)+3 H_{2}(g)}_{4 \mathrm{~mol}} \rightleftharpoons \underbrace{2 N H_{3}(g)}_{2 \mathrm{~mol}} \quad \begin{aligned}
& K_{c}=0.286 \\
& K_{p}=K_{c}(R T)
\end{aligned}
$$

$$
K_{p}=K_{c}(R T)^{\Delta n}=(0.286)[(0.0821)(773)]^{(2-4)}=7.10 \times 10^{-5}
$$

$$
\begin{aligned}
& K_{p, \text { original }}^{\text {new }}=K_{p, \text { news }}^{n} \\
& \text { orig }
\end{aligned} \quad \begin{aligned}
& n=\text { multiplier factor } \\
& \text { orris } \times n=\text { new }
\end{aligned}
$$

e.g. $2 A \rightleftharpoons 2 B+C \quad K_{c}=\frac{(3)^{2} \cdot 4}{(2)^{2}}=9$

$$
\downarrow \times \frac{1}{2}
$$

$$
A \rightleftharpoons B+\frac{1}{2} C \quad K_{c}=\frac{3 \cdot(4)^{1 / 2}}{2}=3
$$

concentrations dint $\underbrace{}_{k_{c} \text { changes }}$ change blc chemist so [conc] can uses different corf.
(EX) contd
In a previous example, K was determined to be 24.5,

$$
2 \mathrm{~N}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{~N}_{2}+\mathrm{O}_{2} \quad \mathrm{~K}_{\mathrm{c}}=24.5
$$

¿What is Kc for the reaction...

$$
\mathrm{N}_{2} \mathrm{O} \rightleftharpoons \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2}
$$

The multiplication factor is $1 / 2$. Doit start over and perform RICQ. Rather...

$$
\begin{array}{r}
K_{\text {new }}=\left(K_{\text {orig }}\right)^{\text {n-factn }}=(24.5)^{1 / 2} \\
K_{\text {new }}=4.95
\end{array}
$$

(EX) Calculate Kc from RICE
¿10.0 moles of N2O are placed into a 2.00 L container, where it decomposes. At equilibrium, 2.20 moles of N 2 O remain. What is Kc ?
(EX) Calculate Kc from RICE
¿10.0 moles of N2O are placed into a 2.00 L container, where it decomposes. At equilibrium, 2.20 moles of N2O remain What is Kc?

$$
M=\frac{\text { mol }}{L}=\frac{10.0}{2.00}=5.00 \quad \frac{2.20}{2.00}=1.10
$$

(EX) Talc EQ concentration from Kc
What are the equilibrium concentrations for A, B, C, D if one started with 0.400 mol of A \& B in a 2.00 L container, and knowing $\mathrm{KC}=49$?

$$
\begin{aligned}
x & =7(0.200-x) \\
x & =1.400-7 x \\
8 x & =1.400 \\
x & =0.175
\end{aligned}
$$

$$
2 e \frac{x}{0.200-x}=7
$$

(EX) Talc EQ concentration from Kc
¿ What are the equilibrium concentrations for A, B, C, D if one started with 0.400 mol of A \& B in a 2.00 L container, and knowing $\mathrm{Kc}=49$?

$$
\begin{aligned}
& M_{A}=M_{B}=0.400 \mathrm{mal} / 2.00 \mathrm{~L}=0.200
\end{aligned}
$$

$$
\begin{aligned}
& K_{c}=49=\frac{(x)(x)}{(0.2-x)(0.2-x)}=\frac{x^{2}}{(0.2-x)^{2}} \\
& \sqrt{49}=\sqrt{\frac{x^{2}}{(0.2-x)^{2}}} \xrightarrow[\text { equal }]{\text { perfect }} 7=\frac{x}{0.2-x} \\
& A=0.200-0.175=0.025 \mathrm{M} \\
& 7(0.2-x)=x \\
& B={ }^{\prime \prime}=0.025 \mathrm{M} \\
& 1.4-7 x=x \\
& c=x=0.175 \quad \leftarrow \quad 1.4=8 x \\
& D=x=0.175 \\
& 0.175=x
\end{aligned}
$$

The Quadratic Equation

$$
\begin{array}{r}
\text { for } a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array}
$$

$$
K_{c}=\frac{[P R O D U C T S]^{p}}{[\text { REACTANTS }]^{r}} \longleftarrow \text { if any one changes, another must too ... }_{\ldots \text { to RESTore } K}
$$

Rock-the-Boat: LeChatlier's Principle

Gases

$$
\begin{aligned}
& P=(n / \sim) \overleftarrow{R T} \text { [conc] } \\
& \downarrow \text { d affect both sike s } \downarrow
\end{aligned}
$$

- sys wants to keep same amount of "CROWDEDNESS"
(a) $\uparrow P, \downarrow V \rightarrow$ move croorded \rightarrow SHFT to side that
gives smaller \# particles
(b) $\downarrow P, \uparrow V \rightarrow$ less crowded \rightarrow SHFT to side that gives LARGish \# particles

Catalyst
No affect on K

$$
\underbrace{\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})}_{4} \rightarrow \underbrace{2 \dot{N}_{3}(\mathrm{~g})+\Delta H}_{2}
$$

$\Delta \mathrm{H}=-92 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
(a) Force mose $\uparrow \mathrm{H}_{2}$ into SYS
(b) Romone $\downarrow \mathrm{NH}_{3}$
(c) Remove $\downarrow \mathrm{N}_{2}$
(d) \uparrow Presure bs \downarrow Vol
(C) \uparrow Temp
(t) add catalyet

SHFT RT \longrightarrow
SHFT RT \longrightarrow
SHPT LFT \&
SHFT RT \rightarrow (to \downarrow crouding)
SHFT LFT $\longleftarrow($ nex is Exo)
NO EFF\&CT

The Haber Process Dilemma
(a case study of when equilibrium and kinetics work against each other)

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}
$$

\longrightarrow Add heat shifts EQ LEFT, but...
\hookrightarrow Remove heat makes $R \times N$ uneconomical slow (slow © $<450^{\circ} \mathrm{C}$)
Remedy O Remove product to drive $R \times N$ RT

- High Temp replaces product rapidly

Determining Relative Changes - The " 1 " in "RICE"

- RaTio per coff in BCE
- Sign per whetter ar not material is lost $(-)$ or gamed (t)

$$
\begin{aligned}
& R \mathrm{C}_{3} \mathrm{H}_{8}(2)+\mathrm{SO}_{2}(\mathrm{~g}) \rightleftharpoons 3\left(\mathrm{O}_{2}(2)+4 \mathrm{H}_{2} \mathrm{O}(2)\right. \\
& I+x+5 x-3 x-4 x
\end{aligned}
$$

Three Basic Types of Equilibrium Problems

- Call K_{c} firm $[\text { reset, Prod }]^{\Sigma Q}$

$$
\text { 1en/lunk, }(p 732)
$$

- Calk [RSACT, PROD] ${ }^{\text {ce }}$ from K_{c}; all [CONC] known but one.
- Call [RSACT, PROD] ${ }^{\text {EQ }}$ from K_{c}; RICE (RICEICE)
(EX) Talc [conc] for 1 Unknown from Kc
[ex 13.7]
¿ NO is produced by reaction of N 2 and O 2 at high temperature. At $2000 \mathrm{~K}, \mathrm{Kc}=4.1 \mathrm{E}-4$. Find the [NO] in the equilibrium mixture with air at 1 atm , at this temperature, knowing that in air, [N 2] $=0.036 \mathrm{M}$ and [O2] = 0.0089 M ?

$$
K_{c}=4.1 \varepsilon-4=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}
$$

LECTURE STOP

(EX) Calc [conc] for 1 Unknown from Kc [ex 13.7]
¿NOx is produced by reaction of N2 and O2 at high temperature. At $2000 \mathrm{~K}, \mathrm{Kc}=4.1 \mathrm{E}-4$. Find the [NO] in the equilibrium mixture with air at 1 atm , at this temperature, knowing that in air, [N 2] $=0.036 \mathrm{M}$ and [O2] $=$ 0.0089 M ?

$$
\mathrm{Kc}=4.1 \mathrm{E}-4
$$

$$
\begin{aligned}
K_{c} & =Q_{c}=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]} \\
{[\mathrm{NO}]^{2} } & =K_{c}\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right] \\
{[\mathrm{NO}] } & =\sqrt{K_{c}\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} \\
& =\sqrt{\left(4.1 \times 10^{-4}\right)(0.036)(0.0089)} \\
{[\mathrm{NO}] } & =3.6 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

(EX) EQ Shift Calculation: Quantitative
¿If a system at equilibrium has the following concentrations, what is the affect of halving the volume?

Approximate Solutions: when K is very small (makes problem much easier)

- If K is very small, the Quadratic εf can of be avoided
- 5% rule is invoked
(EX) The 5\% Rule Illustrated
¿What are the equilibrium concentrators in a 0.15 M HCN solution?

CHECK 5\% RULE

$$
\longleftarrow \quad X=8.6 \times 10^{-6} \mathrm{~m}
$$

(see next page)
when you can and cant ignore a value

The 5\% Rule - How does it work?

- The basics idea is that the calculated concentration is acceptable IF that calculated value varies less than 5% of the starting amount.
- Depending on the situation, your employer might accept a 10% variance, or maybe want no more than a 1% variance... but for this class, we'll go with 5%

How to calculate \%Variance

QUESTION: Is the variance less than 5% ?
ANSWER: Calculate variance, then compare it to 5%.

$$
\% \text { variance }=\frac{\text { calculated amount }}{\text { initial amount }} x 100
$$

(example next page)
(EX) ...continuing from the previous example problem...
¿Having calculated equilibrium concentratoins in a 0.15 M HCN solution using the 5% rule, is the final values acceptable?
$\%$ variance $=\frac{\text { calculated amount }}{\text { initial amount }\left(\text { or } C_{a}\right)} \times 100=\frac{x}{0.15} \times 100=\frac{8.6 \times 10^{-6}}{0.15} \times 100=0.006 \%$

$$
\text { OK: } \quad 0.006 \%<5 \%
$$

Alternate mathematical version (easier math)
Is C_{a} greater than $20 x ?$

$$
C_{a}>20 x
$$

$$
0.15>20(8.6 \varepsilon-6)
$$

$$
0.15>0.0002
$$

$$
\therefore \text { good asscuption }
$$

$$
\frac{1}{20}>\frac{x}{c_{a}}
$$

"BEFORE-the-calculation" best guess as to whether or not the 5% rule will work (from source other than the textbook)

Is C_{a} greater than $100 K_{a}$?

$$
\begin{aligned}
& C_{a}>100 K_{a} \\
& 0.15>100(4.9 \varepsilon-10) \\
& 0.15>4.9 \varepsilon-8
\end{aligned} \quad \begin{aligned}
& \text { anticypabd } \\
& \text { soot assumption }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Before-the-fact: compare Ca to Ka. } & C_{a}>100 K_{a} \\
\text { After-the-fact: compare Ca to x } & C_{a}>20 x
\end{array}
$$

(EX) Calc \% Decomposition of Product <hard>
¿For the following reaction and associated data, what \% of HBr is decomposed at equilibrium, at 1297 K , starting with pure HBr ?

For the usn: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HBr}(\mathrm{g})$
K_{c} values ave: $\quad \begin{aligned} & K_{c}=35,000 \text { e } 1495 \mathrm{~K} \\ & K_{c}=160,000 \text { e } 1297 \mathrm{~K}\end{aligned} \downarrow \uparrow 9 \times 0$

$$
1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HBr}(\mathrm{~g}) \quad K_{c}(\text { now })=
$$

(EX) Calc \% Decomposition of Product <hard>
¿For the following reaction and associated data, what \% of HBr is decomposed at equilibrium, at 1297 K , starting with pure HBr ?

(EX) Addn of material to system at Equilibrium
¿ H 2 and 12 are mixed at $229^{\circ} \mathrm{C}$ in a sealed 1.00 L container. Equilibrium is established at $[\mathrm{H} 2]=0.080 \mathrm{M}$, [IR] $=0.060 \mathrm{M}$, and $[\mathrm{HI}]=0.490 \mathrm{M}$. If 0.300 mol of HI is then -added, what concentrations are present when equilibrium is re-established?

$$
K_{c}=
$$

\square

problem which ilustrates a number of the equilibrium concepts
(source: W9, Ex17-11)

(EX) Addn of material to system at Equilibrium ¿ H 2 and I 2 are mixed at $229^{\circ} \mathrm{C}$ in a sealed 1.00 L container. Equilibrium is established at $[\mathrm{H} 2]=0.080 \mathrm{M}$, [I2] $=0.060 \mathrm{M}$, and $[\mathrm{HI}]=0.490 \mathrm{M}$. If 0.300 mol of HI is then added, what concentrations are present when equilibrium is re-established?

Note: The following is a single question that :illustrates many of the equilibrium concepts.

van Hoff

$$
\ln \frac{K^{\prime}}{K}=\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)
$$

CC

$$
\ln \frac{k^{\prime}}{k}=\frac{\varepsilon_{a}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)
$$

$$
\ln \frac{p^{\prime}}{p}=\frac{\Delta H_{v}}{R}\left(\frac{1}{T}-\frac{1}{T^{\prime}}\right)
$$

why "K" must change wo changing input...

[$\mathrm{MND}, \mathrm{RaAct}]$ is maintained

