

## Cheat Sheet (Stephenson)





HOH

H30

Kb

H30<sup>+</sup> 7

HOH

V BH\*



H307

帅

Hott

HA

HO



P

Bronsted-Lowry Acids & Bases [14.1]

# Examples of Acids

# **B–L Acid Definition**

- $A \subset IO donates proton$  $HX \rightarrow H^+ + X^-$
- BASE accepts protin
  - $B^- + H^+ \rightarrow BH$

|    |      |               | 1 |  |  |  |  |
|----|------|---------------|---|--|--|--|--|
|    |      | ARRHANIUS     |   |  |  |  |  |
|    |      | @ + At in W   |   |  |  |  |  |
|    |      | () +Ho in W   |   |  |  |  |  |
|    | BL : | (A) Ht donor  |   |  |  |  |  |
|    |      | 1 Ht acceptor |   |  |  |  |  |
| L٩ | wlg. | () accept LP  |   |  |  |  |  |
|    |      | ( dinak LP    |   |  |  |  |  |

Conjugate Acid–Base Pairs

Acid Equilibrium Constant: Ka

$$\begin{array}{rcl} \mathsf{HA} & \rightarrow & \mathsf{H^{+}} + \mathsf{A^{-}} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

$$H_2O + HA \rightarrow H_3O^+ + A^-$$
  
 $K_a = \frac{[H_3O^+][A^-]}{[HA]}$ 





...so... in a glass of water at 25 °C, 1-in-100 billion water molecules break apart into ions



| TEMP                  |   | $K_{a}$              |  |  |  |  |  |
|-----------------------|---|----------------------|--|--|--|--|--|
| $0  {}^{\mathrm{o}}C$ | = | $0.11	imes 10^{-14}$ |  |  |  |  |  |
| $10^{\rm o}C$         | = | $0.29	imes10^{-14}$  |  |  |  |  |  |
| $25^{\mathrm{o}}C$    | = | $1.0	imes 10^{-14}$  |  |  |  |  |  |
| $37^{\rm o}C$         | = | $2.4	imes10^{-14}$   |  |  |  |  |  |
| $60^{\circ}C$         | = | $9.6	imes10^{-14}$   |  |  |  |  |  |

Relationship between Water & an Acid: Acid Ionization Constant, Ka

Abbreviated version ...

$$\mathsf{HF} \rightleftharpoons \mathsf{F}^{\scriptscriptstyle -} + \mathsf{H}^{\scriptscriptstyle +} \qquad \qquad K_{a,HF} = rac{[H^+][F^-]}{[H_2 0]}$$

## Amphiprotic Species - "It's an acid AND a base!"



The "-logX" function

$$pH_{K}^{X} = -logX$$
  
 $pH_{K}^{H} = -log[H^{+}]$   
 $pH_{K}^{OH} = -log[HO^{-}]$   
 $pK = -log[K]$   
 $pK_{a}^{-} = -log[K]$ 

pH vs. pOH vs. pKw

$$\textbf{\textit{k}}_{w} = [H^{+}][HO^{-}] = 10^{-14}$$

$$-log[H^+] \,+\, -log[HO^-] \,= -log10^{-14} \,= -logK_a$$

$$pH+pOH~=~14~=~pK_W$$



(EX) Calc of pH of basic solution ¿What is the pH of a basic solution with a hydroxide conc. of 0.0125 M?

$$\begin{bmatrix} H^{+}] = \frac{10^{-14}}{[H^{0}]} = \frac{10^{-14}}{0.0125} = \frac{8.0 \times 10^{-13}}{2}$$

$$\begin{bmatrix} H^{+}] = -\log [H^{+}] < \frac{10^{-14}}{100} = -\log (8.0 \times 10^{-13})$$

$$\begin{bmatrix} H^{-} = 12.10 \end{bmatrix}$$



# Acid Rain

$$\begin{array}{cccc} Co_2 + H_2O \longrightarrow & H_2Co_3 \\ H_2Co_3 \longrightarrow & H^+ + HCO_3^- \end{array}$$

$$\begin{array}{rcl} SO_{3}(5) &+ &H_{2}O \longrightarrow &H_{2}SO_{4} \\ H_{2}SO_{4} &\longrightarrow &H^{*} &+ &HSO_{4} \end{array}$$

$$\begin{array}{c} -\log \left[ H \right]^{+} \\ \rho H + \rho H = 14 \\ \left[ \begin{array}{c} \rho H \\ + \end{array} \right] \\ \rho \theta H \\ - \log \left[ H^{+} \right] \\ \left[ H^{0} \right$$

7 Strong Acids and 8 Strong Bases

Strong Acids (Dissociate 100%)

| 1<br>H            |                     |                    |                         |                   |                      |                   |                   |                      |                         |                       |               |                     |                 |                      |                |                | He              |
|-------------------|---------------------|--------------------|-------------------------|-------------------|----------------------|-------------------|-------------------|----------------------|-------------------------|-----------------------|---------------|---------------------|-----------------|----------------------|----------------|----------------|-----------------|
| ithium 3          | beryllium<br>4      | 1                  |                         |                   |                      |                   |                   |                      |                         |                       |               | boron<br>5          | carbon<br>6     | nitrogen<br>7        | oxygen         | fluorine<br>9  | neon<br>10      |
| Ĺi -              | Be                  |                    |                         |                   |                      |                   |                   |                      |                         |                       |               | Å                   | ċ               | Ń                    | ò              | Ě              | Ňe              |
|                   |                     |                    |                         |                   |                      |                   |                   |                      |                         |                       |               |                     | C.              | IN NAME              |                | 10.995         |                 |
| 6.941<br>sodium   | 9.0122<br>magnesium |                    |                         |                   |                      |                   |                   |                      |                         |                       |               | 10.811<br>aluminium | 12.011          | 14,007<br>phesphorus | 15.999         | 18.998         | 20.180<br>argon |
| 11                | 12                  |                    |                         |                   |                      |                   |                   |                      |                         |                       |               | 13                  | 14              | 15                   | 16             | 17             | 18              |
| Na                | Mg                  |                    |                         |                   |                      |                   |                   |                      |                         |                       |               | A                   | Si              | P                    | S              | CI             | Ar              |
| 22.990            | 24.305              |                    |                         |                   |                      |                   |                   |                      |                         |                       |               | 26.982              | 28.086          | 30.874               | 32.065         | 35.453         | 39.948          |
| 19                | 20                  | acandium<br>21     | Stanium<br>22           | vanadium<br>23    | chromium<br>24       | manganese<br>25   | 26                | cobait<br>27         | nickel<br>28            | copper<br>29          | anc<br>30     | galium<br>31        | germanium<br>32 | arsenic<br>33        | selenium<br>34 | bromine<br>35  | kryptor<br>36   |
| ĸ                 | Ĉa                  | Śc                 | Ťi                      | v                 | Ĉr                   | М́п               | Fe                | Сo                   | Ñi                      | Ću                    | Ź'n           | Ga                  | Ĝe              | Äs                   | Se             | Br             | Ќг              |
| 11098             | La                  | 4195               | 67.067                  | 53.942            | 51.006               | 54.033            | Fe                | 51.011               | 58.491                  | Cu.                   | 45.33         | 69.721              | 7244            | 24.822               | 36             | 22.804         | <b>R1</b>       |
| nabidum           | strantium           | ythium             | zinconium               | niobium           | molybdenum           | technetium        | ruthenium.        | hodum                | paladium                | silver                | cadmium       | indum               | tin             | antimony             | telurium       | kodine         | xence           |
| 37                | 38                  | 39                 | 40                      | 41                | 42                   | 43                | 44                | 45                   | 46                      | 47                    | 48            | 49                  | 50              | 51                   | 52             | 53             | 54              |
| Rb                | Sr                  | Y                  | Zr                      | Nb                | Мо                   | Tc                | Ru                | Rh                   | Pd                      | Ag                    | Cd            | In                  | Sn              | Sb                   | Te             |                | Xe              |
| 85.468            | 17.62               | 88.906             | 91,224                  | 92.906            | 95.96                | [98]              | 101.07            | 102.91               | 105.42                  | 107.87                | 112.41        | 114.82              | 118.71          | 121.76               | 127.60         | 126.90         | 131,29          |
| caesium<br>55     | 56                  | lanthanum<br>57    | hafnium<br>72           | tantalum<br>73    | tungsten<br>74       | rhenium<br>75     | osmium<br>76      | iridium<br>77        | platinum<br>78          | gold<br>79            | mercury<br>80 | thalium<br>81       | lead<br>82      | bismuth<br>83        | polonium<br>84 | astatine<br>85 | 13don<br>86     |
| Ċs                | Ba                  |                    | Ĥf                      | Та                | Ŵ                    | Re                | Ôs                | Îr                   | Pt                      | Au                    | Hg            | ŤΙ                  | Pb              | Bi                   | Po             | At             | Rn              |
| 112.41            | Dd                  | La                 | 128.49                  | 180.85            | 163.84               | 186.21            | 199.21            | 192.22               | 195.01                  | AU 196.47             | <b>ng</b>     | 201.38              | PD              | 206.98               | PO             | 218            | [222]           |
| 13231<br>francium | 137.33<br>radium    | 138.91<br>actinium | 178.49<br>natherfordium | 180.95<br>dubnium | 183.84<br>seaborgium | 186.21<br>bohrium | 190.23<br>hassium | 192.22<br>meitnerkan | 195.08<br>darrestadtium | 196.97<br>roerágenium | 200.59        | 204,38              | 207.2           | 208.98               | [209]          | [216]          | [222]           |
| 87                | 88                  | 89                 | 104                     | 105               | 106                  | 107               | 108               | 109                  | 110                     | 111                   |               |                     |                 |                      |                |                |                 |
| Fr                | Ra                  | Ac                 | Rf                      | Db                | Sg                   | Bh                | Hs                | Mt                   | Ds                      | Rg                    |               |                     |                 |                      |                |                |                 |
| 12230             | 1226                | 12270              | (261)                   | [262]             | 12661                | [264]             | 12771             | 266                  | (271)                   | 12721                 |               |                     |                 |                      |                |                |                 |

# Calc of [H<sup>+</sup>] for Strong Acid

$$\begin{array}{cccc} R & HA \longrightarrow H^{+} + A^{-} \\ I & C_{a} & \not p \\ C & -C_{a} & +C_{a} & +C_{a} \\ \end{array}$$

$$\begin{array}{cccc} C_{a} & C_{a} \\ \hline \end{array}$$

$$\begin{array}{cccc} E & F \\ \hline \end{array}$$

$$\begin{array}{cccc} E & C_{a} \\ \hline \end{array}$$

Shortcut formulas for relating [H<sup>+</sup>] and [HO<sup>-</sup>] to inital acid and base concentrations

$$\begin{array}{ccc} HA & \longrightarrow & H^{+} + A^{-} & [H^{+}] = Ca \\ \hline MOT & W & BOOK \\ \hline Ca & is the initial \\ concentration of the acid. \\ \hline MOH & \longrightarrow & M^{+} + HO^{-} & [Ho^{-}] = C_{b} \end{array}$$

Shortcut formulas NOT in OpenStax

•

$$\begin{array}{c} (EX) pH \text{ of SA solution} \\ & Calc the pH \text{ of a } 0.050 \text{ M HNO}_3 \text{ solution}? \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) & (H^+) = C_a = 0.050 \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+) \\ & (H^+) & (H^+) & (H^+) & (H^+$$

# Weak Acids

Weak Bases

$$B + HOH \ \rightleftharpoons \ BH + HO^-$$

$$[HO^{-}]=\sqrt{C_{b}K_{b}}$$

Shortcut: Estimating Values

# (EX) Calc pH for WA $\dot{z}(a)$ What is the pH of a 0.10 M hypochlorous acid, HOCI. For HOCI, Ka = 3.5E-8 M

|                                                                                  | HOCl + $H_2$                                           | $O \Longrightarrow H_3O^+ +$     | - OCl-      |                              |
|----------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------|-------------|------------------------------|
| initial                                                                          | 0.10M                                                  | $\approx 0 M$                    | 0 M         |                              |
| change due to rxn                                                                | -xM                                                    | +xM                              | +xM         | [Ht] = lCala                 |
| at equil                                                                         | (0.10 - x) M                                           | x M                              | x M         | 1 CII J - Mara               |
| Substituting these algebraic rep                                                 | resentations into the $K_a$ ex                         | pression gives                   |             | $-\sqrt{(0.1)(7.5 + 2 - 8)}$ |
| $K = \frac{[\mathrm{H}_{3}\mathrm{C}]}{[\mathrm{H}_{3}\mathrm{C}]}$              | $[O^+][OCl^-] = \frac{(x)(x)}{(0.10 - x)}$             | $=3.5 \times 10^{-8}$            | ) -         |                              |
| ~~a []                                                                           | HOC1] $(0.10 - x)$                                     |                                  |             | SHA = 5.91×10-5              |
| This is a quadratic equation, bu                                                 |                                                        |                                  |             |                              |
| small value of the equilibrium c<br>ionizes. Thus we can assume th               |                                                        |                                  |             |                              |
| not matter (much) whether we                                                     |                                                        |                                  |             |                              |
| equal to 0.10. The equation the                                                  | n becomes                                              |                                  |             | Ű                            |
| $\frac{x^2}{0.10} \approx 3.5 \times 10^{-8}$                                    | $x^2 \approx 3.5 	imes 10^{-9}$                        | so $x \approx 5.9 \times$        | 10-5        | pt = - log 5.91 x10-5        |
| In our algebraic representation                                                  | we let                                                 |                                  |             |                              |
| $[\mathrm{H}_{3}\mathrm{O}^{+}] = xM :$                                          | = $5.9 \times 10^{-5} M$ ; [OC]=                       | $= x M = 5.9 \times 10^{-10}$    | $10^{-5} M$ | (-4.22)                      |
| _[HOCl] = (0.10                                                                  | -x)M = (0.10 - 0.0000)                                 | <del>59) <u>M</u> =</del> 0.10 M |             |                              |
| K                                                                                | $1.0 \times 10^{-14}$                                  |                                  |             | 1,04 - 4.22                  |
| $[\mathbf{OH}^{-}] = \frac{\mathbf{A}_{\mathbf{w}}}{[\mathbf{H}_{3}\mathbf{C}]}$ | $\frac{1.0 \times 10^{-14}}{5.9 \times 10^{-5}} = 1.7$ | × 10 <sup>-10</sup> M            |             |                              |
| <b>(b)</b> pH = $-\log(5.9 \times 10^{-5})$                                      | = 4.23                                                 |                                  |             |                              |
|                                                                                  |                                                        |                                  |             |                              |

WeAK ACIO -> [H]-Jak HA (EX) Calc pKa for WA ¿The pH of a 0(115 M solution of chloroacetic acid, a weak acid monoprotic acid, is 1.92. What is pKa? Co - pH-- - log [H+] -= 1.92 山 ey. - log Ka E ANI Ka  $HA \ge 1H^{-1}$ +14 Ko 

#### (EX) Calc pKa for WA

¿The pH of a 0.115 M solution of chloroacetic acid, a weak acid monoprotic acid, is 1.92. What is pKa?



END LECTURES #2

% Ionization

$$% |onization = \frac{[H^+]}{Ca} \times 100$$
  
Initial conc.

(EX) Calc % Ionization for a Weak Acid [whitten] ¿Calc the pH and % ionization for 0.10 M solution of acetic acid (Ka = 1.8E–5)

Relationship among Ka, Kb, and Kw

$$K_{a} \cdot K_{b} = \frac{C_{H}+JC_{A}-J}{[HA]} \cdot \frac{C_{H}AJC_{H}b^{-}J}{[A^{-}]} = [H^{+}JC_{H}b^{-}J = K_{w}$$

$$K_{a}K_{b} = K_{w}$$

$$K_{a}K_{b} = K_{w}$$

$$K_{a} + \rho K_{b} = [4 \quad alt. varsn$$

## **Relative CA–CB Strengths**



|                          | Acid                                                                                                                                                                                          |                                                                                                                |                                                       | Base                                                  |                                                                                                                                                                      |                                                                                                                                                                     |                          |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| 1                        | perchloric acid<br>sulfuric acid<br>hydrogen iodide<br>hydrogen bromide<br>hydrogen chloride<br>nitric acid<br>hydronium ion<br>hydrogen sulfate ion                                          | $HCIO_4$ $H_2SO_4$ $HI$ $HBr$ $HCI$ $HNO_3$ $H_3O^+$ $HSO_4^-$                                                 | Undergo<br>complete<br>acid<br>ionization<br>in water | Do not<br>undergo<br>base<br>ionization<br>in water   | lergo I <sup>−</sup> iodide ion<br>se Br <sup>−</sup> bromide ion                                                                                                    |                                                                                                                                                                     |                          |  |  |
| Increasing acid strength | hydrogen sunate for<br>phosphoric acid<br>hydrogen fluoride<br>nitrous acid<br>acetic acid<br>carbonic acid<br>hydrogen sulfide<br>ammonium ion<br>hydrogen cyanide<br>hydrogen carbonate ion | $HSO_{4}$ $H_{3}PO_{4}$ $HF$ $HNO_{2}$ $CH_{3}CO_{2}H$ $H_{2}CO_{3}$ $H_{2}S$ $NH_{4}^{+}$ $HCN$ $HCO_{3}^{-}$ |                                                       |                                                       | H <sub>2</sub> PO <sub>4</sub><br>F<br>NO <sub>2</sub><br>CH <sub>3</sub> CO <sub>2</sub><br>HCO <sub>3</sub><br>HS<br>HN <sub>3</sub><br>CN<br>CO <sup>2</sup>      | dihydrogen phosphate ion<br>fluoride ion<br>nitrite ion<br>acetate ion<br>hydrogen carbonate ion<br>hydrogen sulfide ion<br>ammonia<br>cyanide ion<br>carbonate ion | Increasing base strength |  |  |
|                          | water<br>hydrogen sulfide ion<br>ethanol<br>ammonia<br>hydrogen<br>methane                                                                                                                    | $H_{2}O$ $HS^{-}$ $C_{2}H_{5}OH$ $NH_{3}$ $H_{2}$ $CH_{4}$                                                     | Do not<br>undergo<br>acid<br>ionization<br>in water   | Undergo<br>complete<br>base<br>ionization<br>in water | OH <sup>-</sup><br>S <sup>2-</sup><br>C <sub>2</sub> H <sub>5</sub> O <sup>-</sup><br>NH <sub>2</sub> <sup>-</sup><br>H <sup>-</sup><br>CH <sub>3</sub> <sup>-</sup> | hydroxide ion<br>sulfide ion<br>ethoxide ion<br>amide ion<br>hydride ion<br>methide ion                                                                             |                          |  |  |



## Salt Solutions [14.4]

Deconstruct Salt into original acids and bases (using H+ and HO-)



4 Sources of Salts from Acids & Bases



# SA/SB [Q1]



WA/SB [Q4]



## SA/WB [Q2]



WA/WB [Q3]





(EX) WA/WB Salt - Acidic, Basic, or Neutral?

¿NH4F is added to water. It the resulting solution acidic, basic, neutral, or not enough infomation to determine. (Kb,NH3 = 1.8E–5, Ka,HF = 7.2E–4)



(EX) SB/WA Salt System ¿Calc pH for 0.10 M solution of NaCN? (Kb,CN = 2.5E-5) SALT 1) The divergence from neutral NaCN must be due exclusively to CN- $H^+ + N_a$ Her + + +0. 2 ANS will be basic [H0] = / (0.10)(2.5E-5) 3 TPS: [Ho] = /C, K, Yes WB 0.0016 [Ho] = POH = 2.8 ⊕ C<sub>b</sub> > 100 Kb
 ↓ 2.5 € -3 = 250 €-1 PH= 14-2.8=11.2 6/2019

## Polyatomic Acids [14.5]





(EX) ¿Calc concentration of all species in 0.10 M H3PO4 solution?

$$\begin{array}{c} \bigcirc C_{a}/K_{a} = \underbrace{0.10/7.5 \ \xi - 3}_{a} = 13 < 100, :: \operatorname{Rice}/\operatorname{DUARKATC} Yuck \left( \\ K_{a_{1}} = \underbrace{\frac{1.4^{+}3C}{0.1 - C} + \frac{1.604^{2}}{0.04}}_{0.1 - C} = 7.5 \ \xi - 3 \\ \xrightarrow{0.0}_{Outwarkatic} = \underbrace{1.4^{+}3C}_{Outwarkatic} + \underbrace{1.4^{+}36}_{0.1} = 2.4 \ \xi - 2.4 \ \times 10^{-2} \\ \times \\ \end{array} \right) \\ \begin{array}{c} (3) \quad K_{a_{2}} = \underbrace{\frac{1.4^{+}3C}{0.4}}_{CH_{a}} + \underbrace{1.4^{-2}}_{0.4} = \underbrace{1.4^{+}36}_{0.4} = \frac{1.4^{+}36}{0.4} \\ \xrightarrow{1}_{c} = \frac{1.4^{+}3C}_{c} + \underbrace{1.4^{+}36}_{0.4} = \frac{1.4^{+}36}{0.2 \times 10^{-2}} \\ \xrightarrow{1}_{c} = \frac{1.4^{+}3C}_{c} + \underbrace{1.4^{+}36}_{0.4} = \frac{1.4^{+}36}{0.2 \times 10^{-2}} \\ \xrightarrow{1}_{c} = \frac{1.4^{+}3C}_{c} + \underbrace{1.4^{+}36}_{0.4} = \frac{1.4^{+}36}_{0.4} \\ \xrightarrow{1}_{c} = \frac{1.4^{+}3C}_{c} + \underbrace{1.4^{+}36}_{0.4} \\ \xrightarrow{1}_{c} = \frac{1.4^{+}3C}_{c} + \underbrace{1.4^{+}36}_{c} \\ \xrightarrow{1}_{c} = \frac{1.4^{+}3}_{c} \\ \xrightarrow{1}_{c} = \frac{1.4^{+}3C}_{c} \\ \xrightarrow{1}_{c} = \frac$$

$$R H_{2}A \Longrightarrow H_{2}A^{-} \Rightarrow H^{+} H_{2}A^{-} \Longrightarrow HA^{a^{-}} + H^{+} HA^{a^{-}} \Longrightarrow A^{3^{-}} + H^{+}$$

$$C_{\alpha} & \emptyset & \emptyset & X & \emptyset & X \\ C - - X + X + X & -Y + Y + Y \\ E (G_{-}X) & X & X & (X-y) & y (X+y) \\ \end{array}$$

## Buffers [14.6]



$$H A = A^{-} + H^{+}$$

$$K_{a} = \frac{[A^{-}][H^{+}]}{[HA]} \xrightarrow{a} [H^{+}] = \frac{K_{a} CHA]}{[A^{-}]}$$

$$-\log[H^{+}] = -\log K_{a} - \log \frac{[HA]}{[A^{-}]}$$

$$-\log[H^{+}] = -\log K_{a} - \log \frac{[HA]}{[A^{-}]}$$

$$pH = pK_{a} + \log \frac{[A^{-}]}{[HA]} \xleftarrow{pH} = pK_{a} - \log \frac{[LAA]}{[A^{-}]}$$

$$eht = pK_{a} - \log \frac{[LA]}{[A^{-}]}$$

$$eht = pK_{a}$$

$$[H^{+}] = K_{a}$$

$$pH = pK_a + log rac{[A^-]}{[HA]}$$
   
 Varian? of [H<sup>4</sup>] =  $\frac{C_a K_a}{C_b}$ 





I. Before any base added

$$HA_{2} \implies A_{c}^{-} + H^{+}$$

$$\int C_{a} = 0.000 7 (00) K_{a} = 0.0018$$

$$[H^{+}] = \sqrt{C_{a}K_{a}} = \sqrt{(0.100)(1.85-5)} = 1.345-3 \implies pH = 2.87$$

II. 75 mL strong base added

$$mol = M \cdot L \qquad R + Ho^{-} + HA_{E} \implies A_{E}^{-} + HoH$$

$$mmal = M \cdot mL \qquad l = 7.5 \quad 10.0 \quad ps$$

$$mmol + 4A_{E} = (0.100 \text{ m})(100 \text{ mL}) = 10.0 \quad f \leq ps \quad 2.5 \quad 7.5$$

$$mmd + 40 = (0.100 \text{ m})(75 \text{ mL}) = 7.5 \qquad J$$

$$further Solver$$

$$pH = 5.22 \qquad \leftarrow \left[H^{+}\right] = \frac{CaK_{a}}{C_{b}} = \frac{2.5}{7.5} \quad \frac{1.82 \cdot 5}{7.5} = 6.02 - 6 \qquad \text{result} \quad 121$$



# III. 95 mL base added

Approach 1: Add 95 mL base to original pure acid sample ("starting over")

n mul 
$$Hd_{z} = (0.100 \text{ m})(100 \text{ ml})$$
  
= 10.0  
numl Ho<sup>-</sup> = (0.100 \text{ m})(175 \text{ ml}) -9.5 +9.5  
= 7.5  $p$  0.5 9.5  
 $p$  0.5 9.5  

6.02

SKMS

Approach 2: Add 20 mL of base to previous buffer solution ("continuation")

| mund HAz = 2.5 mand       | Ho-+ HAz = Az + Hzo |
|---------------------------|---------------------|
| [fr. provoe EQUIL]        | 2.0 2.5 7.5         |
| much Ho== (0.100M) (2Dnd) | -2.0 -2.0 +2.0      |
| = 2.0 minut               | \$ 0.5 9.5          |
| Lant added to Gulfer 3    |                     |

#### IV. At Equivalence Point



## V. Excess base after equivalence point ... 110 mL base added

$$R H0^{-} + HAz \implies Az + H0H$$

$$I II.0 I0.0 pc$$

$$C -10.0 -10.0 + 10.0$$

$$E I.0 pc I0.0$$

$$V B = 0.0 pcH = 2.32$$

$$V H0^{-} = C_{b} = \frac{1.0 \text{ nml}}{(110 \text{ nsl} + 100 \text{ nsl})} = 4.76E-3$$

$$PH = 11.68$$

## VI. Summary

| $mL \ base$ | pH    | D                                          |
|-------------|-------|--------------------------------------------|
| 0           | 2.87  | STR &ABS                                   |
| 75          | 5.22  | SALT<br>WATER - er pt.<br>BUFFUR<br>BUFFUR |
| 95          | 6.02  | Buffer                                     |
| 100         | 8.72  | A pH = pKa                                 |
| 110         | 11.62 | 2 AIRS ACID                                |



# Buffer vs. Unbufferd Systems: Illustrated

| UNbuffered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Buffered                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccc} R & HAc = Ac^{-} + H^{+} \\ I & 0.100 & p & p' \\ C & -x & x & x \\ \hline C & 0.10D - x & x & x \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{rcl} HAc = Ac^{-} + H^{+} \\ 0.100 & 0.100 & 8 \\ \hline - \times & + \times & + \times \\ \hline 0.100 - \times & 0.100 + \times & X \end{array}$       |
| [H+]=√CaKa = (0.100)(1.8E-5)<br>= 1.3E-3 → pH=2.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{bmatrix} H^{+}] = \frac{C_{a} K_{a}}{C_{b}} = \frac{0.100}{0.100}$                                                                                              |
| $ \begin{array}{c} \downarrow + 0.010 \text{ mml } MaOH\\ R HO^{-} + HAz \Longrightarrow Az^{-} + HzO\\ I 0.010 & 0.100 & &\\ \underbrace{( -0.010 - 0.010 + 0.010)}{\xi & & 0.010 + 0.010}\\ \hline & & 0.090 & 0.010 \\ \downarrow & & 0.090 & &\\ \downarrow & & & & & \\ \downarrow & & & & & \\$ | $= 1.85 \pm -5 \longrightarrow pH= 4.74$ $+0^{-} + HAz \implies Az^{-} + H_2O$ $-0.010  0.100  0.100$ $-0.010  -0.010  +0.010$ $\neq 0.090  0.11D$ $\int Buffer  CA/CB$ |
| $HAc \ge Ac^- + H^+$<br>0.090 0.010 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $HAc \ge Ac^{-} + H^{+}$<br>0.090 0.110 Ø                                                                                                                               |
| $\begin{bmatrix} H^{\dagger} \end{bmatrix} = \frac{CaKa}{C_{b}} = \frac{0.090}{0.010}   1.85 - 5 \\ = 1.6 \xi - 4 \rightarrow pH = 3.79$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{bmatrix} H^{+}] = \frac{C_{a}K_{a}}{C_{b}} = \frac{0.090}{0.10}   1.8 = -5$<br>= 1.5 \vert -5 -> pH = 4.82                                                      |
| $\Delta(\text{unbeffend}) = 3.79 - 2.87$<br>$\Delta = +0.92  \text{UN buffend}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta (Buffingl) = 4.82 - 4.78$ $\Delta = +0.08 Bufferdl$                                                                                                             |

**Exam Practice Problems** 



↓

(EX) ¿What is the pH of a 0.20 M ammonium nitrate solution? (Ka,NH4+ = 5.6E-10)







↓





↓

(EX) ¿Calc the pH of 0.10 M sulfuric acid solution? (Look up Ka's)

$$H_2 SO_4 \xrightarrow{-H^+}_{K_{4,2} \infty} HSO_4 \xrightarrow{-H^+}_{K_{42} = 0.012} SO_4^{2-}$$

(1) 
$$S74P = S4_{3} A_{2}Sd_{4}$$
,  $(AT_{1}) = C_{4} = (0.0 M) = C_{4}Sd_{4}^{-1}$   
(2)  $S74P = 2 = K_{42} = \frac{C94^{2-1}C4T_{1}}{(H904^{-1})}$ 
(3)  $S74P = 2 = K_{42} = \frac{C94^{2-1}C4T_{1}}{(H904^{-1})}$ 
(4)  $C_{42} = \frac{C94^{2-1}C4T_{1}}{(H904^{-1})}$ 
(5)  $C_{4} = \frac{C94^{2-1}C4T_{1}}{(C_{4})}$ 
(7)  $C_{4} = \frac{C94^{2-1}C4T_{1}}{($ 

(EX) Calc pH of a solution of 0.15 M HF and 0.20 M KF? (Ka,HF = 7.2E-4)

$$\begin{array}{cccc} C_{q} = 100 \ \text{Ka} & \longrightarrow & \left[ H^{\dagger} \right] = & \underline{C_{a} \text{Ka}} & = & \underline{0.15} & 7.22 - 4 \\ 0.15 = 7.22 - 2 = 0.072 & & C_{b} & = & \underline{0.20} \\ & & YE5 & & \\ & & (H^{\dagger}] = 5.42 - 4 & \textcircled{pH} = 3.27 \end{array}$$

(EX) ¿Calc the pH of a solution that is 0.20 M NH3(aq) and 0.10 M NH4Cl? (Kb,NH3 = 1.8E–5)

$$\begin{array}{c} (6) \ 100 \ k_{b} \\ 0.20 \ 2 \ 1.85-3 \\ 0.20 \ 2 \ 0.85-3 \\ 0.20 \ 2 \ 0.0018 \end{array} \xrightarrow{[H0]} = \frac{K_{b}C_{b}}{C_{a}} = \frac{1.85-5}{0.10} = 3.45-5 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.$$

#### (EX) ¿Calc pH of 0.010 M solution of ethanol (pKa,ethanol = 15.9)

Note that the pla for when is 14, so Ethold is less a cid then when is to therefore, the H<sup>+</sup> cartinburlier from water cannot be regleded. R HA = A<sup>-</sup> + H<sup>+</sup> I 0.010 B 10<sup>-7</sup> C -x + x + xKa = 10<sup>-59</sup> Ka = 1.26 × 10<sup>6</sup> R HA = A<sup>-</sup> + H<sup>+</sup> I 0.010 B 10<sup>-7</sup> C -x + x + xKa = 1.26 × 10<sup>6</sup> R HA = A<sup>-</sup> + H<sup>+</sup> C  $= 0.010 \times 100 \text{ Ka} = 1.26 \times 10^{16}$ C  $= 0.010 \times 100 \text{ Ka} = 1.26 \times 10^{16}$ I  $= 126 \times 10^{16}$ I  $= 126 \times 10^{16}$ M  $= 126 \times 10^{16}$ M  $= 126 \times 10^{16}$ M  $= 126 \times 10^{17} \text{ Ka} = 10^{17} \text{ K$ 

(EX) How many grams of NH4Cl must be added to 500 mL of 0.10 M NH3 to produce a buffer of pH = 9.15? (Kb,NH3 = 1.8E-5)



(EX) ¿What is the pH of a 1-liter solution prepared from 0.115 mol NaNO2 and 0.070 mol HCl, followed by a 2-fold dilution in water?

(a) 
$$R = Wa^{+} + W_{2}^{-} + H_{2}^{-} \rightarrow H_{N0_{2}} + G^{-}$$
  
 $Salt + SA neutralization, then dilution
 $C = -0.070 = -0.070 = 0.070$   
 $0.045 = B = 0.070 \Rightarrow Buffer Solution$   
 $H^{+}$   
 $H_{N0_{2}} = N0_{2}^{-} + H^{+}$   
 $L = 4.5E-4$   
 $L = -\frac{1}{C_{b}} = \frac{0.070}{0.045} = \frac{4.5 \leq -4}{2} = 7.00 \times 10^{-4} = [H^{-1}] \rightarrow PH = 3.15$$ 

(b) If dilute 50/50, both Ca and C6 are equally diluted; hence the ratio Ca/C6 does not change; hence, the pH remains the same.



(EX) Calc pH of a 0.12 M solution of NaOCI?



$$\begin{array}{c} 0.10M\\ Cu(NO_{3})_{2} + HOH \rightleftharpoons Cu(OH)_{2} + 2HNO_{3}^{-} \qquad K = ?\\ Cu^{2+} + HOH \rightleftharpoons Cu(OH)_{2} + H^{+} \qquad \qquad \swarrow fH^{+} - HO \\ Cu^{2+} + HOH \rightleftharpoons Cu(OH)_{2} + H^{+} \qquad \qquad \swarrow fH^{-} - HO \\ fH$$

3.16E-5 3.16E-5

$$K = \frac{(3.16 \le -5)^2}{0.10} = 1.0 \times 10^8 = K \longrightarrow pK = 8$$

R

t

د\_\_\_\_ بر

D.10

