$$
\begin{gathered}
1412-\text { E2 } \\
\text { CH } 14 \text { - Acid-Base Equilibria } \\
\text { Notes }
\end{gathered}
$$

$$
\begin{aligned}
& K_{a} K_{b}=K_{w}=10^{-14} \\
& p K_{a}+p K_{b}=p K_{u}=14 \\
& {\left[H^{+}\right]\left[H_{0}-3=10^{-14}\right.} \\
& p K_{a}+p K_{b}=14
\end{aligned}
$$

Examples of Acids

$$
\begin{array}{rl|l}
\mathrm{H}_{2} \mathrm{SO}_{4} & =\text { car balzery } & \mathrm{CaCO}_{3}=\text { Tums } \\
\mathrm{NaOH}_{\mathrm{a}} & =\text { drano } & \mathrm{MaCO}_{3}= \\
\mathrm{NaHCO}_{3}=\text { baking soda } & \mathrm{KHCO}_{3}= \\
\mathrm{AcH}_{\mathrm{CH}}=\text { vinegar }(5 \%) & \mathrm{Mg}(\mathrm{OH})_{2}=\text { Alka-seltzer } \\
\mathrm{HCO}_{2} \mathrm{H} & =\text { formic }=\text { ant bite } & \mathrm{Al}(\mathrm{OH})_{3}=
\end{array}
$$

B-L Acid Definition
$A \subset I D$ - donates proton

$$
\mathrm{HX} \rightarrow \mathrm{H}^{+}+\mathrm{X}^{-}
$$

BASE - accerots protin

$$
\mathrm{B}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{BH}
$$

Arritanius
(A) $+\mathrm{H}^{+}$in w
(B) $+\mathrm{HO}_{0}$ in ω

	$B L:(A)$	H^{+}donov
	(B)	H^{+}acceplor
Lawls: (A)	accert LP	
(B)	dinak L^{P}	

Conjugate Acid-Base Pairs
0 acid $=1$ proton + conj. base

- conjugate acid-base pair

$$
\begin{aligned}
\begin{array}{ll}
\mathrm{ACID} & \\
\mathrm{HA} & \longrightarrow \mathrm{~A}^{-}+\mathrm{H}^{+} \\
\mathrm{HF} & \longrightarrow \mathrm{~F}^{-}+\mathrm{H}^{+} \\
\mathrm{H}_{2} \mathrm{SO}_{4} & \longrightarrow \mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} \\
\mathrm{HSO}_{4} & \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{H}^{+} \\
\mathrm{NH}_{4}+ & \longrightarrow \mathrm{NH}_{3}+\mathrm{H}^{+}
\end{array}
\end{aligned}
$$

$\left(\begin{array}{c}\left.\text { Asian: } \begin{array}{c}\text { CONSaRVASION OF } \\ \text { CHARGE }\end{array}\right)\end{array}\right.$

Acid Equilibrium Constant: Ka
$\mathrm{HA} \rightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$
prolou/hydrogen ion

$$
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

$\mathrm{H}_{2} \mathrm{O}+\mathrm{HA} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
hydronium ion

$$
K_{a}=\frac{\left[H_{3} O^{+}\right]\left[A^{-}\right]}{[H A]}
$$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+{ }^{\mathrm{HO}^{-}-}
$$

Hydronium ion Hydurideion

$$
\begin{aligned}
& K_{a}=K_{w}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HO}^{-}\right]}{\left[\mathrm{H}_{2} 0\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HO}^{-}\right]=1.0 \times 10^{-14} \\
& \text { Ka ,w }
\end{aligned}
$$

...so... in a glass of water at $25^{\circ} \mathrm{C}, 1$-in-100 billion water molecules break apart into ions

TEMP	K_{a}
$0^{\circ} \mathrm{C}$	$=0.11 \times 10^{-14}$
$10^{\circ} \mathrm{C}$	$=0.29 \times 10^{-14}$
$25^{\circ} \mathrm{C}$	$=1.0 \times 10^{-14}$
$37^{\circ} \mathrm{C}$	$=$
$60^{\circ} \mathrm{C}$	$=9.4 \times 10^{-14}$
	9.6×10^{-14}

$$
\underset{\subset A / \angle B \underbrace{H F}_{C B / C A}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}}{ } \quad K_{a, H F}=\frac{\left[H_{3} O^{+}\right]\left[F^{-}\right]}{[H F]}
$$

Abbreviated version ...

$$
\mathrm{HF} \rightleftharpoons \mathrm{~F}^{-}+\mathrm{H}^{+} \quad K_{a, H F}=\frac{\left[H^{+}\right]\left[F^{-}\right]}{\left[H_{2} 0\right]}
$$

Amphiprotic Species - "It's an acid AND a base!"

Carbous acat carbonde
(EX) ¿Which of the folling is/are amphiprotic?

$$
\mathrm{HHO}_{3} \quad \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \quad \mathrm{HSO}_{4}^{-} \quad \mathrm{H}_{3} \mathrm{PO}_{4} \quad \mathrm{CeO}_{4}^{-}
$$

answer: HSO4-

The "-logX" function

$$
\begin{aligned}
p H & =-\log X \\
\text { pH pHW } & =-\log \left[H^{+}\right] \\
\text {pOH } & =-\log \left[H O^{-}\right] \\
p K & =-\log (K K) \\
\text { pKa } & =-\log K_{a}
\end{aligned}
$$

pH vs. pOH vs. pKw

$$
\begin{gathered}
\overbrace{K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HO}^{-}\right]=10^{-14}}^{\text {earlier }} \\
-\log \left[\mathrm{H}^{+}\right]+-\log \left[\mathrm{HO}^{-}\right]=-\log 10^{-14}=-\log K_{a} \\
p H+p O H=14=p K_{W}
\end{gathered}
$$

(EX) Calc of pH of basic solution ¿What is the pH of a basic solution with a hydroxide conc. of 0.0125 M ?

$$
\left[H 0^{-}\right]=0.0125 \begin{aligned}
{\left[H^{+}\right] } & =\frac{10^{-14}}{\left[H 0^{\circ}\right]}=\frac{10^{-14}}{0.0125}=\frac{8.0 \times 10^{-13}}{} \\
\rho H & =-\log \left[H^{+}\right] \longleftarrow \\
& =-\log \left(8.0 \times 10^{-13}\right) \\
\rho H & =12.10
\end{aligned}
$$

Relative pH Scale ($\mathrm{pH}=7=$ neutral)

$$
\begin{aligned}
& \mathrm{HOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HO}^{-} \\
& K_{a}=\left[H^{+}\right]\left[\mathrm{HO}^{-}\right]=10^{-14} \\
& \sqrt{ } \text { © }\left[\mathrm{H}^{-1}\right]=\left[\mathrm{HO}^{-}\right]=\text {neateal } \\
& \begin{aligned}
K_{a}=(x)(x) & =10^{-14} \\
x^{2} & =10^{-14}
\end{aligned} \\
& x=10^{-7} \\
& \downarrow \\
& x=\left[H^{-1}\right]=10^{-7} \\
& -\log \left[\mathrm{H}^{+}\right]=-\log \left(10^{-7}\right) \\
& p H=7 \quad e \text { neutral. }
\end{aligned}
$$

Acid Rain

$$
\begin{aligned}
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} & \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \\
\mathrm{H}_{2} \mathrm{CO}_{3} & \longrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} & \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{H}_{2} \mathrm{SO}_{4} & \longrightarrow \mathrm{H}^{+}+\mathrm{HSO}_{4}^{-}
\end{aligned}
$$

$$
\begin{aligned}
& -\log [H]^{+} \\
& \mathrm{PH}+\mathrm{POH}=14 \mathrm{POH}_{-\log \left[\mathrm{HO}^{-}\right]}^{\mathrm{PH}}\left[\mathrm{HO}^{-}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{HO}^{-}\right]=10^{-14} \\
& \text { (strong acid) }\left[H^{+}\right]=C_{a} \\
& \text { (weak acid) }\left[H^{+}\right]=\sqrt{C_{a} K_{a}} \\
& \text { (weak acid buffer) } \quad\left[H^{+}\right]=\frac{C_{a} K_{a}}{C_{b}} \\
& {\left[\mathrm{HO}^{-}\right]=C_{b} \quad \text { (strong base) }} \\
& {\left[\mathrm{HO}^{-}\right]=\sqrt{C_{b} K_{b}} \quad \text { (weakbase) }} \\
& {\left[\mathrm{HO}^{-}\right]=\frac{C_{b} K_{b}}{C_{a}} \text { (weakbase buffer) }}
\end{aligned}
$$

7 Strong Acids and 8 Strong Bases

Strong Acids (Dissociate 100\%)

Calc of $\left[\mathrm{H}^{+}\right]$for Strong Acid

Shortcut formulas for relating $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{HO}^{-}\right]$to inital acid and base concentrations

$$
\mathrm{HA} \longrightarrow \mathrm{H}^{+}+\mathrm{A}^{-} \quad\left[\mathrm{H}^{+}\right]=\mathrm{C}_{a}
$$

Not \mathbb{N} Book ${ }^{\prime \prime} C_{a}{ }^{\prime \prime}$ is the INITIAL concentration of the acid.

$$
\mathrm{MOH} \longrightarrow \mathrm{M}^{+}+\mathrm{HO}^{-} \quad\left[\mathrm{HO}^{-}\right]=\mathrm{C}_{b}
$$

(EX) pH of SA solution
Call the pH of a $0.050 \mathrm{M} \mathrm{HNO}_{3}$ solution?

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]=C_{a} } & =0.050 \\
\longrightarrow p H & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log (0.050) \\
p H & =1.3
\end{aligned}
$$

Weak Acids

$$
\begin{aligned}
& \begin{array}{l}
c_{a}>100 \mathrm{Ka} ? \\
\mathrm{Ca}_{a}>20 \mathrm{x} \text { ? }
\end{array} \\
& {\left[H^{+}\right]=\sqrt{C_{a} K_{a}} \quad \longleftarrow^{K_{a}=\frac{x^{2}}{C_{a}}}}
\end{aligned}
$$

Weak Bases

$$
B+H O H \rightleftharpoons B H+H O^{-}
$$

$$
\left[H O^{-}\right]=\sqrt{C_{b} K_{b}}
$$

Shortcut: Estimating Values
(1) $C_{a} / K_{a}>100 ; C_{a}>100 K_{a} \quad$ " C_{a} is at least 2 ordure greater than" K "
(2) $C_{a} / x>20 ; C_{a}>20 x \quad$ " C_{a} is at least $20 x$ la urn than x "
(Notes: \#1 dog not require publem be worked out; \#2does)
(EX) Calc pH for WA
¿(a) What is the pH of a 0.10 M hypochlorous acid, HOCl . For $\mathrm{HOCl}, \mathrm{Ka}=3.5 \mathrm{E}-8 \mathrm{M}$

	HOCl	$+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OCl}^{-}$	
initial	$0.10 M$		$\approx 0 M$	$0 M$
change due to rxn	$-x M$		$+x M$	$+x M$
at equil	$(0.10-x) M$		$x M$	$x M$

Substituting these algebraic representations into the K_{a} expression gives

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OCl}^{-}\right]}{[\mathrm{HOCl}]}=\frac{(x)(x)}{(0.10-x)}=3.5 \times 10^{-8}
$$

This is a quadratic equation, but it is not necessary to solve it by the quadratic formula. The small value of the equilibrium constant, K_{a}, tells us that not very much of the original acid ionizes. Thus we can assume that $x \ll 0.10$. If x is small enough compared with 0.10 , it will not matter (much) whether we subtract it, and we can assume that $(0.10-x)$ is very nearly equal to 0.10 . The equation then becomes

$$
\frac{x^{2}}{0.10} \approx 3.5 \times 10^{-8} \quad x^{2} \approx 3.5 \times 10^{-9} \quad \text { so } \quad x \approx 5.9 \times 10^{-5}
$$

In our algebraic representation we let

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=x M=5.9 \times 10^{-5} M ;\left[\mathrm{Cl}^{-}\right]=x M=5.9 \times 10^{-5} \mathrm{M}
$$

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14}}{5.9 \times 10^{-5}-1.7 \times 10^{-10} \mathrm{M}}
$$

(b) $\mathrm{pH}=-\log (5.9 \times 105)=4.23$
(EX) Talc pKa for WA
¿The pH of a 0.115 M solution of chloroacetic acid, a weak acid monoprotic acid, is 1.92 . What is pKa ?

$$
{ }^{7}\left[\mathrm{H}^{+}\right]{ }^{\mathrm{Ca}} \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.92 \xrightarrow{\left.\mathrm{H}^{+}\right]}
$$

Ans

$$
p K_{a}=-\log K_{a} \leqslant
$$

$$
H A \rightleftharpoons 1 H^{+}
$$

$$
+1 A^{-}
$$

(EX) Call pKa for WA
¿The pH of a 0.115 M solution of chloroacetic acid, a weak acid monoprotic acid, is 1.92 . What is pKa ?

\downarrow Fails short at test

END LECTuRE \#2
\% Ionization

$$
\%_{0} \text { lonization }=\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{Ca}_{a} \times 100}(\mathrm{p} 76 q)
$$

(EX) Calc \% Ionization for a Weak Acid
[whiten] ¿Calc the pH and \% ionization for 0.10 M solution of acetic acid ($\mathrm{Ka}=1.8 \mathrm{E}-5$)
(9) $\frac{C_{a}}{K_{a}}>100 ? \frac{0.10 \times 10^{0}}{1.8 \times 10^{-5}}=\frac{10,000 \times 10^{-5}}{1.8 \times 10^{-5}}=5,000 \therefore$ use "shatut" $^{\prime \prime}$
(b) $\left[\mathrm{H}^{+}\right]=\sqrt{C_{a} k_{a}}=\sqrt{(1.8 \varepsilon-5)(0.10)}=1.3 \times 10^{-3}$
(c) $\mathrm{PH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.3 \times 10^{-3}\right)=2.87$
(d) \% \%ionre $=\frac{\rho_{\text {ant }}}{\text { white }}=\frac{\left[H A_{c}\right]_{\text {ion }}}{\left[H A_{c}\right]_{\text {init }}}=\frac{\left[H^{+}\right]}{C_{a}}=\frac{1.3 \times 10^{-3}}{0.10} \times 100=1.3 \%$

Relationship among Ka, Kb, and Kw

$$
\begin{aligned}
& K_{a} \cdot K_{b}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \cdot \frac{[A A]\left[40^{-}\right]}{\left[4^{-}\right]}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HO}^{-}\right]=K_{w} \\
& \\
& K_{a} K_{b}=K_{w} \\
& \rho K_{a}+\rho K_{b}=14 \text { alt. vast }
\end{aligned}
$$

Relative CA-CB Strengths
incr acid K_{a}

See

¿Calc pH of 0.20 M solution of ammonia, given pKa for ammonium ion is 9.26 ?

$k_{6}=1.8 \times 10^{-5}$
V

$$
P H=14-2.72
$$

$$
p H=11.28
$$

$$
\begin{aligned}
& \begin{array}{l}
C_{a}>100 K_{a} ? \\
20 \times 10^{\circ}>100\left(1.8 \times 10^{-5}\right)
\end{array} \\
& {\left[H_{0}{ }^{-}\right]=\sqrt{C_{b} K_{b}}} \\
& =\sqrt{(0.20)\left(1.8 \sum-5\right)} \\
& \begin{aligned}
200 \times 10^{-3} & >1.8 \times 10^{-3} \\
200 & >1.8 \mathrm{YES} \\
\text { PH } & + \text { POH }=14 \\
\text { PH } & =14-\text { POH }
\end{aligned} \\
& \mathrm{pH}=14-\mathrm{pOH}
\end{aligned}
$$

Salt Solutions [14.4]

Deconstruct Salt into original acids and bases (using H+ and HO-)

4 Sources of Salts from Acids \& Bases

WA/SB [Q4]
 \therefore sys is BAsic

WA/WB [Q3]

if $K_{a}>K_{b}$, then $A C$ DDC

$K_{a}<K_{b}$, then BASIC $K_{a}=K_{b}$, then NGUTRR $\quad(\mathrm{pH}=7)$
(EX) WA/WB Salt - Acidic, Basic, or Neutral?
¿NH4F is added to water. It the resulting solution acidic, basic, neutral, or not enough information to determine. $(\mathrm{Kb}, \mathrm{NH} 3=1.8 \mathrm{E}-5, \mathrm{Ka}, \mathrm{HF}=7.2 \mathrm{E}-4)$

SALT
(1) The divergence furn neutral must be due excluswel to CN^{-}
(2) ANS will be basic

(3) TRS: $\left[H 0^{-}\right]=\sqrt{C_{b} K_{b}} \xrightarrow[\text { Yes }]{ }$

$$
\begin{aligned}
& {\left[\mathrm{HO}^{-}\right]=\sqrt{(0.10)(2.5 \varepsilon-5)}} \\
& {\left[\mathrm{H}^{-}\right]=0.0016} \\
& \mathrm{POH}=2.8 \\
& \mathrm{PH}=14-2.8=11.2
\end{aligned}
$$

(EX) ¿Calc concentration of all species in $0.10 \mathrm{M} \mathrm{H} 3 P \mathrm{P} 4$ solution?
(1) $C_{a} / K_{a}=0.10 / 7.5 \varepsilon-3=13<100, \therefore$ RICa/Qutprat 7 Y Yuck!

(3) $K_{a_{3}}=\frac{\left.{ }^{Z} \mathrm{H}^{+}\right]\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}=\frac{(z)(2.4 \varepsilon-2+k)}{(6.2 \varepsilon-8-k)}=3.6 \times 10^{-13}$

$$
\left[H^{H}\right]=\sum\left[1 H^{H}\right]=(2.4 E-2)+(6.2 E-8)+\left(9.3 \times 10^{-19}\right)=0.024 \mathrm{M}
$$

$$
\begin{aligned}
& z=9.3 \times 10^{-19}=\left[\mathrm{H}^{+}\right]=\left[\mathrm{PO}_{4}^{3-}\right] \\
& \longleftrightarrow
\end{aligned}
$$

Def: wA $+C B$ (a WB $+C A$)
eg: $\quad A_{c} H+A_{c}^{-}$
How it wank:

$$
K_{a}=\frac{(x)\left(C_{b}+x\right)}{\left(C_{a}-x\right)} \xrightarrow{\left.C_{a}\right\rangle 100 K_{a}}{C_{a}>20 x}_{K_{a}}^{K_{a}}=\frac{\left[H^{+}\right] C_{b}}{C_{a}} \longrightarrow\left[H^{+}\right]=\frac{C_{a} K_{a}}{C_{b}} \text { equaralt }
$$

like wise: $\left[100^{-}\right]=\frac{C_{b} K_{b}}{C_{a}}$
(EX) Calc pH of Buffer Soln of WA Calc pH of a solution that is 0.10 M in HAc and 0.20 M in NaAc ? ($\mathrm{Ka}, \mathrm{HAc}=1.8 \mathrm{E}-5$)

ov $\quad q-i n-100,000 \approx 1-i n-10,000$
short cut
Assump funs $=Y \subset S, \therefore$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{C_{a} K_{u}}{C_{b}}=\frac{0.1}{0.2} 1.03 \varepsilon-5} \\
& {\left[\mathrm{H}^{+}\right]=9.0 \varepsilon-6 \rightarrow p H=5.05}
\end{aligned}
$$

$$
\begin{gathered}
H A \rightleftharpoons A^{-}+H^{+} \\
K_{a}=\frac{\left[A^{-}\right]\left[H^{+}\right]}{[H A]} \longrightarrow \quad\left[H^{+}\right]=\frac{K_{a}[H A]}{\left[A^{-}\right]} \\
-\log \left[H^{+}\right]=-\log K_{a}-\log \frac{[H A]}{\left[A^{-}\right]} \\
\rho H=\rho K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}<\rho H=\rho K_{a}-\log \frac{[H A]}{\left[A^{-}\right]}
\end{gathered}
$$

$$
\mu=\frac{m l}{L} \Omega \text { me rM.L }
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { at the modpoit } \\
\left.\left[A^{-}\right]=C H_{A}\right]
\end{array} \log 1=\phi \quad\left(H^{+}\right]=\frac{K_{a} C_{a}}{C_{b}} \\
& \rho H=\rho K_{a} \\
& {\left[H^{+}\right]=K_{a}}
\end{aligned}
$$

$$
\left.p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}\right] \sum_{\text {vavian }] \text { of }\left[H^{+}\right]=\frac{C_{a} K_{a}}{C_{b}}, ~(H)}
$$

(EX) ¿Calc pH of a solution that is created by adding 100 mL of 0.20 M i MAc and 400 mL of 0.10 NMaAc ? (Ka, WAc $=1.8 \mathrm{E}-5$)

$$
\begin{aligned}
& 100 \text { nL }\left(\frac{0.20 \mathrm{ml}}{L_{c}}\right) \\
& p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]} \\
& p K_{a}=-\log (1.8 E-5)=4.74
\end{aligned}
$$

$$
\begin{aligned}
{\left[H^{\prime}\right]=\frac{C_{a} K_{c}}{C_{b}} } & =\frac{(0.20)(100) \cdot 1.8 \varepsilon-5}{(0.00)(400)} \\
& =\frac{20 \mid 1.85-5}{40} \\
& =\frac{1.8 \varepsilon-5}{2}= \\
{\left[\mathrm{H}^{+}\right] } & =9.00 E-6 \\
\text { P. }^{H} & =5.05
\end{aligned}
$$

$$
\begin{aligned}
& p H=4.74+\log \frac{0.10(400 / 500)}{0.20(100 / 500)} \\
& p H=4.74+\log \frac{0.10(400)}{0.20(100)} \\
& p H=4.74+\log \frac{40 .}{20 .} \\
& p H=4.74+\log 2 \\
& p H=5.04
\end{aligned}
$$

The Players:

$$
\begin{aligned}
& \text { Ti rant }=0.100 \mathrm{M} \mathrm{NaOH} \\
& \text { Ti } 7 \mathrm{rand}=0.100 \mathrm{M} \mathrm{HAc} \\
& \cdot \text { starting val } 4 \mathrm{Ac}=100 \mathrm{~mL} \\
& \cdot \mathrm{Kac}_{\mathrm{c}}(4 \mathrm{4c})=1.8 \mathrm{\varepsilon}-5
\end{aligned}
$$

100 m Has

I. Before any base added

$$
\begin{aligned}
& H A_{c} \rightleftharpoons A_{c}^{-}+H^{+} \\
&\left.\downarrow_{a}=0.000\right\rangle\left(100 K_{a}=0.0018\right. \\
& {\left[H^{+}\right]=\sqrt{C_{a} K_{a}}=\sqrt{(0.100)(1.8 \varepsilon-5)}=1.34 \varepsilon-3 \Rightarrow p H=2.87 }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{mol}=M \cdot L \\
& m m a l=M \cdot m L \\
& \mathrm{R} \mathrm{HO}^{-}+\mathrm{HAC}^{-} \rightleftharpoons \mathrm{AC}^{-}+\mathrm{HOH}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{mal} 40=(0.100 \mathrm{M})(75 \mathrm{~mL})=7.5 \\
& \begin{array}{c}
\downarrow \\
\text { Buffer Sol }
\end{array} \\
& p H=5.22 \quad\left[\mathrm{H}^{+}\right]=\frac{C_{a} K_{a}}{C_{b}}=\frac{2.5}{7.5} 1.8 \varepsilon-5 \\
& \mathrm{mmol}=\mathrm{M} \cdot \mathrm{~mL} \\
& M=\frac{m ? \cdot 1000}{(2 \cdot 1000} \\
& M=\frac{\mathrm{mol}}{L} \\
& =\frac{\text { mad }}{m L} \\
& \mathrm{~mol}=M \cdot L \\
& m m o l=M \cdot m L
\end{aligned}
$$

III. 95 mL base added

Approach 1: Add 95 mL base to original pure acid sample ("starting over")

$$
\begin{aligned}
& \text { name } H t_{2}=(0.100 \mathrm{M})(100 \mathrm{ML}) \quad \mathrm{HO}^{-}+H A_{2} \rightleftharpoons A_{C}^{-}+\mathrm{H}_{2} \mathrm{O} \\
& =10.0 \\
& m \mathrm{mal} \mathrm{HO}^{-}=(0.100 \mathrm{M})(95 \mathrm{~mL}) \\
& =9.5 \\
& \begin{array}{ccc}
-9.5 & -9.5 & +9.5 \\
\hline \phi & 0.5 & 9.5
\end{array} \\
& \text { BUFFeR } \longleftarrow \\
& \rightarrow\left[H^{+}\right]=\frac{C_{a} K_{a}}{C_{b}}=\frac{0.5}{9.5} 1.8 \sum-50
\end{aligned}
$$

Approach 2: Add 20 mL of base to previous buffer solution ("continuation")

$\operatorname{mul} \mathrm{H}_{2}=2.5 \mathrm{mmal}$
[fo. prow ore scull]
mind $\mathrm{HO}^{-}=(0.100 \mathrm{M})(20 \mathrm{~mL})$
$=2.0 \mathrm{mmal}$
[ant atop to buffer]

$$
\begin{array}{cc}
\mathrm{H}_{0}+\mathrm{H} A_{2} & \rightleftharpoons \mathrm{~A}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \\
2.02 .5 & 7.5 \\
-2.0-2.0 & +2.0 \\
\hline 6 & 0.5
\end{array}
$$

IV. At Equivalence Point

Conc if Salt

$$
\begin{aligned}
& \square M=\frac{\square \mathrm{ml}}{\square L}=\frac{10.0 \mathrm{mal}}{200.0 \mathrm{~mL}}=0.050 \mathrm{M} \\
& \varlimsup_{100 \mathrm{~L}, \mathrm{Hze}+100 \mathrm{c}, \mathrm{H}, \mathrm{OH}} \\
& =200 \mathrm{~mL} \text { TOT VOL }
\end{aligned}
$$

weak base system \downarrow

$$
\begin{aligned}
& {\left[H O^{-}\right]=\sqrt{c_{b} K_{b}}} \\
& =\sqrt{\frac{C_{b} \mid K_{L}}{K_{a}}}=\sqrt{0.050 \left\lvert\, \frac{1 \varepsilon-14}{1.8 \varepsilon-5}\right.}=5.27 E-6=\left[40^{\circ}\right] \\
& \downarrow \\
& \text { oOH }=5.28 \\
& \text { Reasondle: expert } \angle Q P T \\
& \text { fin SB/WA syn to be }>7 \\
& \longrightarrow p H=8.72
\end{aligned}
$$

V. Excess base after equivalence point ... 110 mL base added

VI. Summary

$m L$ base	$p H$
0	2.87
75	5.22
95	6.02
100	8.72
110	11.62

@MIDPOINT
$[\mathrm{A}-]=[\mathrm{HA}]$
so, $[\mathrm{A}-] /[\mathrm{HA}]=1$
so, $\log 1=0$
therefore, @midpoint: $\mathrm{pH}=\mathrm{pKa}$

UNbuffered
$\left.\begin{array}{cccc}R & H A_{c} & \rightleftharpoons & A_{c}^{-} \\ 1 & 0 . H^{+} \\ C & -100 & \varnothing & \not \subset \\ \varepsilon & 0.100-x & & x\end{array}\right) x$
$\left[H^{+}\right]=\sqrt{C_{a} K_{a}}=(0.100)(1.8 \varepsilon-5)$ $=1.3 \varepsilon-3 \rightarrow P H=2.87$

$$
\downarrow+0.010 \mathrm{mml} \mathrm{NaOH}
$$

$R \quad \mathrm{HO}^{-}+\mathrm{HAc}$	$\rightleftharpoons \mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O}$	
10.010	0.100	\varnothing
$c-0.010-0.010$	+0.010	
ε	$\phi \quad 0.090$	0.010

\downarrow Buffer $C A / C B$

$$
\underset{0.010}{\mathrm{HAC}} \underset{0.0}{ } \mathrm{AC}^{-}+\mathrm{H}^{+}
$$

$$
\begin{aligned}
{\left[H^{+}\right] } & \left.=\frac{C_{a} K_{a}}{C_{b}}=\frac{0.090}{0.010} \right\rvert\, 1.8 \varepsilon-5 \\
& =1.6 \varepsilon-4 \rightarrow p H=3.79
\end{aligned}
$$

$$
\Delta \text { (unbiffered })=3.79-2.87
$$

$\Delta=+0.92$ unbuftend

Buffered

$$
\begin{array}{ccc}
H A_{c} & \rightleftharpoons A c_{-}^{-}+H^{+} \\
0.100 & 0.100 & 6 \\
-x & +x & +x \\
\hline 0.100-x & 0.100+x & x
\end{array}
$$

$$
\begin{array}{rl}
{\left[H^{+}\right]} & =\frac{C_{a} K_{a}}{C_{b}}=\frac{0.100}{} \\
\hline 0.100 & 1.8 \varepsilon-5 \\
& =1.85 \varepsilon-5 \rightarrow \quad \mathrm{PH}=4.74 \\
\downarrow
\end{array}
$$

$$
\underset{0.090}{H A C} \underset{0.110}{ } \underset{A_{2}^{-}+H^{+}}{ }
$$

$$
\begin{aligned}
{\left[H^{+}\right] } & \left.=\frac{C_{a} K_{a}}{C_{b}}=\frac{0.090}{} \right\rvert\, 1.8 \varepsilon-5 \\
0.110 & \\
& =1.5 \varepsilon-5 \rightarrow \quad P H=4.82
\end{aligned}
$$

$$
\Delta(\text { Buffued })=4.82-4.78
$$

$$
\Delta=+0.08 \text { Bufferch }
$$

Exam Practice Problems
(EX) $\sqrt{\text { What is the } \mathrm{pH} \text { of a } 0.20 \mathrm{M} \text { ammonium nitrate solution? (Ka, } \mathrm{NH} 4+=5.6 \mathrm{E}-10) ~}$

(EX) ¿What is the pH of a 0.20 M ammonium nitrate solution? ($\mathrm{Ka}, \mathrm{NH} 4+=5.6 \mathrm{E}-10$)

- Reduces to a
 weak aced padsbun

$$
\begin{aligned}
& \mu_{H_{4}} \rightleftharpoons N H_{3}+H^{+} \quad\left[H^{+}\right]=\sqrt{C a K a} \\
&=\sqrt{(0.20)(5,6 \varepsilon-10)} \\
& p H=4.96=1.1 \varepsilon-5 \mathrm{M} \\
&
\end{aligned}
$$

(EX) ¿the (PH)of household ammonia is 11.50. What is the Molarity? (Kb, NH3 $=1.8 \mathrm{E}-5$)

this is the ensure !! Ques could hove been worded, "what is C_{b} "
(EX) ¿the pH of household ammonia is 11.50 . What is the Molarity? $\quad(\mathrm{Kb}, \mathrm{NH} 3=1.8 \mathrm{E}-5)$

$$
\begin{array}{r}
\left(\mathrm{K}_{6}=1.8 E-5\right) \\
\mathrm{H}_{2} \mathrm{O} \\
\stackrel{\|}{\rightleftharpoons}
\end{array}
$$

$$
\begin{aligned}
& {\left[H 0^{-}\right] }=\sqrt{C_{b} K_{b}} \\
& {\left[\mathrm{HO}^{-}\right]^{2} }=C_{b} K_{b} \\
& C_{b}=\frac{\left[H 0^{-}\right]^{2}}{K_{b}} \\
&
\end{aligned} \quad\left\{\begin{aligned}
\mathrm{KH} & =11.50 \\
\mathrm{PDH} & =2.50= \\
{\left[\mathrm{HO}^{-}\right] } & =10^{-2.5} \\
{\left[\mathrm{HO}^{\circ}\right] } & =3.2 \varepsilon-3
\end{aligned}\right.
$$

(EX) ¿Calc the pH of 0.10 M sulfuric acid solution? (Look up Ka’s)

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow[\mathrm{~K}_{1}=\infty]{-\mathrm{H}^{+}} \mathrm{HSO}_{4}-\underset{\mathrm{Kaz}_{2}=0.012}{\stackrel{-\mathrm{H}^{+}}{\Longrightarrow}} \mathrm{SO}_{4}^{2-}
$$

(a) S2ap $1=$ Sts Azid, $\therefore\left[\begin{array}{rr} \\ \text { Step }\end{array}\right]_{a}=0.10 \mathrm{M}=\left[\mathrm{HSO}_{4}{ }^{-}\right]$
(b) star $2=K_{\text {al }}=\frac{\left[\mathrm{CO}_{4}^{2-}\right]\left[\mathrm{H}^{-1}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]}$

$R \mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{SO}_{4}^{2-}+\mathrm{H}^{+}$

ε| c | $-y$ | $+y$ |
| :---: | :---: | :---: |

$\xrightarrow[C a>100 ~ K a ?]{ }\left[\mathrm{H}^{+}\right]=\sqrt{C_{a} K_{a}}$

$0.10\rangle 100(0.012)=1.2 \quad$ FAIL!!!
$\mathrm{SO}_{4}{ }^{2-}$
H^{+}

(c) $\sum\left[\mathrm{Ht}^{+}\right]=0.10+0.01=0.11 \mathrm{M}=\left[\mathrm{H}^{+}\right]$

$$
\mathrm{pH}=0.96
$$

(EX) Calc pH of a solution of 0.15 M HF and 0.20 M KF? (Ka,HF = 7.2E-4)

$$
\begin{aligned}
& \substack{C_{q}=100 \mathrm{Ka} \\
0.15=\underset{Y E S}{7.2 \varepsilon-2}=0.072}
\end{aligned} \longrightarrow\left[\mathrm{H}^{+}\right]=\frac{C_{a} \mathrm{Ka}}{C_{b}}=\frac{0.15}{0.20} 7.2 \varepsilon-4
$$

(EX) ¿Calc the pH of a solution that is $0.20 \mathrm{M} \mathrm{NH} 3(\mathrm{aq})$ and 0.10 M NH 4 Cl ? ($\mathrm{Kb}, \mathrm{NH} 3=1.8 \mathrm{E}-5$)

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
C b>100 K_{b} \\
0.20 \geqslant 1.8 \varepsilon-3 \\
0.20>0.0018
\end{array} \xrightarrow{Y_{\varepsilon S}}\left[H^{0}\right]=\frac{K_{b} C_{b}}{C_{a}}=\frac{1.8 \varepsilon-5}{} \right\rvert\, 0.20\right]=3.6 \varepsilon-5 \\
& \text { } \operatorname{OOH}=4.44 \\
& p H=14-p O H \\
& =14-4.44 \\
& p H=9.56
\end{aligned}
$$

(EX) ¿Calc pH of 0.010 M solution of ethanol $(\mathrm{pKa}$,ethanol $=15.9)$
Note that the pK for water is 14, so Etort is less acid than water! Therefore, the H^{+}contribution from water cannot be neglected.

R	$H A \rightleftharpoons$	$A^{-}+H^{+}$	
1	0.010	\varnothing	10^{-7}
C	$-x$	$+x$	$+x$
ε	$(0.010-x)$	$\times\left(10^{-7}+x\right)$	

$$
\begin{aligned}
p K_{a}=-\log K_{a} & =15.9 \\
K_{a} & =10^{-15.9} \\
K_{a} & =1.26 \times 10^{-16}
\end{aligned}
$$

not WA/CB system
\therefore use trod tiond

K_{a} approach \quad| 0.010 | $1.26 \varepsilon-16$ |
| :---: | :---: |
| 10^{-7} | |

$$
\begin{aligned}
& 1.26 E-M=x=\left[A^{-}\right] \\
& \downarrow \\
& {\left[H^{+}\right] }=10^{-7}+X=10^{-7}+1.26 \times 10^{-11} \approx 10^{-7} \\
& {\left[\mathrm{H}^{+}\right] }=10^{-7} \\
& \mathrm{PH}=7
\end{aligned}
$$

(EX) How many grams of NH4Cl must be added to 500 mL of 0.10 M NH 3 to produce a buffer of $\mathrm{pH}=9.15$? (Kb , $\mathrm{NH} 3=7.8 \mathrm{E}-5$)

$$
m_{n l} l=M \cdot L
$$

<- Analysis:

$$
\begin{array}{cc}
C B \\
\mathrm{HOH}+\mathrm{NH}_{3} & \mathrm{CA}_{4}^{+}+\mathrm{HO}^{-} \quad\left[\mathrm{HO}^{-}\right]=\frac{C_{b} \mathrm{~K}_{b}}{\mathrm{Ca}_{a}}
\end{array}
$$

$$
\text { OOH }=4.85
$$

$$
\left[140^{\circ}\right]=10^{-4.85}=1.41 \varepsilon-5
$$

$$
C_{a}=0.13 M=\left[\mathrm{NH}_{4}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]
$$

$$
\begin{array}{l|c|c|}
\mathrm{g}_{, N H_{4} C e}=0.500 \mathrm{~L} & 0.13 \mathrm{~mol} & 53.5 \mathrm{~g} \\
\hline 1 \mathrm{~L} & 1 \mathrm{~mol}
\end{array}=3.48 \mathrm{~g}=3.5 \mathrm{~g}, \mathrm{NH}_{4} \mathrm{Cl}
$$

$$
\begin{aligned}
& 1(N)=14.0 \\
& 4(H)=4.0 \\
& 1(G)=35.5 \\
& \hline 53.5
\end{aligned}
$$

(EX) ¿What is the pH of a 1-liter solution prepared from 0.115 mol NaNO 2 and 0.070 mol HCl , followed by a 2-fold dilution in water?

(b) If dilute $50 / 50$, both C_{a} and C_{b} are equally diluted; hence the ratio C_{a} / C_{b} does not change; hence, the ρ^{H} remains the same.

$$
\mathrm{pH}(\text { aft dilution })=3.16
$$

(EX) ¿Calc hydroxide ion concentration of a 0.0105 M HCIO 3 solution?

$$
\begin{array}{ll}
{\left[\mathrm{H}^{+}\right]=\mathrm{C}_{a}=0.0105} & \mathrm{Ca} \rightarrow \\
{\left[\mathrm{HO}^{-}\right]=\frac{\mathrm{Kw}_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{10^{-14}}{0.0105}=9.52 \varepsilon-13} & \mathrm{H} \rightarrow \mathrm{HO}^{-}
\end{array}
$$

(EX) Talc pH of a 0.12 M solution of NaOCl ?

$$
\begin{gathered}
{\left[\mathrm{HO}^{-}\right]=\sqrt{C_{b} K_{b}}=\sqrt{\frac{\downarrow}{0.12 \mid K_{a}} K_{w}}=\sqrt{\frac{0.12 \mid 1 \times 10^{-14}}{3.5 \times 10^{-8}}}=1.85 \times 10^{-4}=\left[10^{-}\right]} \\
\downarrow \quad \mathrm{PH}=10.27 \quad \mathrm{POH}=3.73
\end{gathered}
$$

(EX) Calc hydrolysis constant for the hydrated cation $0.10 \mathrm{M} \mathrm{Cu}(\mathrm{NO} 3) 2$ at $\mathrm{pH}=4.50$?

$$
\begin{aligned}
& \stackrel{\mathrm{O}}{\left.\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)_{2}}+\mathrm{HOH} \rightleftharpoons \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3}{ }^{-} \quad \mathrm{K}=? \\
& \mathrm{Cu}^{2+}+\mathrm{HOH} \rightleftharpoons \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{H}^{+}
\end{aligned}
$$

$$
K=\frac{(3.16 \varepsilon-5)^{2}}{0.10}=1.0 \times 10^{-8}=K \quad \rightarrow K=8
$$

