

Enthalpy [5.3] — Review
Chemical Thermodynamics — deals with HEAT–WORK–OTHER ΔE in relation to chemical and physical phenomena.
1st Law of Thermodynamics — Internal Energy $\Delta U = Q \ + \ W$
Universe = System + Surroundings
Phrases to remember
heat in = heat out heat lost = heat gained

Convention: Sign of energy movement across Sys–Surr boundary

- positive q is heat flow in; negative q is heat flow out
 positive w if work is done on the system; and negative w if work is done by the system.

Enthalpy as Reactant (or Product)

Three conventions

(1). At is associated with a particular chemical eq., with specified wefficients. • BH is EXTENSIVE property, = f(ant), and changing coefficient means changing BH value proportionately. (2) Equations are also specific for phase (5, 2, 3, ag).

Representing ΔH as a Product or Reactant (writing ΔH inline)

Ì

$$- If \Delta H = (+), then ENDD
write as PRODUCT
$$A \longrightarrow B \quad \Delta H = -800 \text{ kT} \qquad A \longrightarrow B \quad \Delta H = 800 \text{ kT}$$

$$A \longrightarrow B + 800 \text{ kT} \qquad 800 \text{ kT} + A \longrightarrow B$$

$$Two Types of \Delta H "in-line' Problems$$

$$\Rightarrow \Delta H \text{ for rxn given, calc } \Delta H \text{ for given quantity of material}$$

$$\Rightarrow \Delta H \text{ for quantity of material given, calc } \Delta H \text{ for rxn}$$$$

Standard State

· standard state = vegerence point ~ O'C = fp(water) $(gas) P = \lambda bar = 0.987 atm$ $(aq) M: <math>\lambda M$ (s, λ) pure - (3, 2) pure dicates Stal Stale: () AH²a8 = occures under stal state @ 298K K () AH²a8 = occures under state @ 298K K () AH²a8 = occures under state @ 298K K () AH²a8 = occures under state @ 298K K () AH²a8 = occures under state @ 298K K () AH²a8 = occures under state @ 298K K () AH²a8 = occures under state @ 298K K () AH²a8 = occures und · "" indicates stal stale: · "mole reaction" (P251/259) Lo divided Atturn by ants (mores) of verefat 5: () yield INTENSIVE proputy from 2 axtensive pop SH and # moles ... analogous to DENSITY (INTENSION) from Mass (SXT) and Volume (SXT)

Entropy [16.2]

Microstate Distributions (Hitens) - # par Titles) and Simple # Stake Ja MICAD stake (# 100 ms) Ja MICAD stake n E6: Entropy change in allowing 2 particles in one box to expand into two boxes. for an for 1/4 12 $n^{N} = z^{2} = 4$ AHm - - + 1/2 2 2 $AS = k l \frac{4}{1}$ 1,39 un -> AS + -1/4 12 = 1.38 E-23 J/K b 4 AG -+ AS =+ 1.91 ×10-23 J/K · This is why perfume will spread from a small vial to fill a room. AH = (+) &- rome . does wit hoppin gradum???? MATISS, MASDA NOT MATISS, MASDA NOT ΔH=(4)

żD	id the System, or particles lenergy that make up the system.
	become more: DISORDERED, SPREAD DUT, RANDOM
	a chieve more FREEDOM
	become less RSSTRICTD, CONFINSO
(EX) Pre	edict the sign of ΔS for a system [16.3]
ക	
G	(mis rig ezic 5 2 mar e so c .
G	incr randomness AS=(+)
9	incr randomness AS=(+)
6	$(m_{x} \times k_{y} \oplus 232 \oplus 32 \text{ more } \oplus 302 \oplus 30$
6	$(m_{x} x_{i}) = 232 + 52 + 52 + 52 = 1$ incr randomness $AS = (+)$ $C_{i}H_{i}(R) + 15/2 + 0_{2}(g) = 6 + 00_{2}(g) + 3t_{2}(R)$ 7.5 gas 6 gas
6	$(mS x_{12} \oplus 232 \oplus 32 \oplus 32 \oplus 30 \oplus 30 \oplus 30 \oplus 30 \oplus 3$
6	$(hs^{2}) x (q \in 2S \subseteq 4S \subseteq 2 hou \in 30 \subseteq 1.$ $(hs^{2}) x (q \in 2S \subseteq 4S \subseteq 4S = (4))$ $(q \in (k) + 15/2 D_{2}(g) \rightarrow 6 O_{2}(g) + 3t_{2}(k)$ $(k) = 15/2 D_{2}(g) \rightarrow 6 O_{2}(g) \rightarrow 6 $
ල ල ළ	$(mS xig \in 232 \text{ s} 2 \text{ mar } \text{ s} 302 \text{ s}, 1)$ $(mS xig \in 232 \text{ s} 2 \text{ mar } \text{ s} 302 \text{ s}, 1)$ $(\mu_{C} \text{ randomnoss} AS = (4)$ $(\zeta_{H_{C}}(R) + 15/2 D_{2}(g) \rightarrow 6 OD_{2}(g) + 34b_{2}(R)$ $7.5 \text{ gas} 6 \text{ gas}$ $fenen \text{ gas} Pai \text{ lides}, \text{ less freedom } AS = (-)$ $Na(L(S) \rightarrow Na^{+}(eg) + (R^{-}(og) Disselve \text{ self in under})$

	- 1- 37	
$\Delta S_{universe} = \Delta S_{sys} + \Delta S_{surr}$	2	Sautheous
2	20	HON sponlaneous
	$Q = M N S^{(1)}$	Reversible (@Equil)
· If surroundings are vast (e.g.	earth rainter to ca	up five),
° If surroundings are vast (e.g. ∆H ≥ to Surr i infinitesmal	earth rainface to ca	up fire), iere = 9 nor, and
° If surroundings are vast (e.g. $\Delta H \rightleftharpoons$ to Surre infinitesmall $\Delta S_{universe} = \Delta S_{sys} + \Delta S_{universe}$	earth valities to cache small, then \mathfrak{f} s $S_{surr}=\Delta S_{sys}+$	up five), $are = q rest, ard$ $- \frac{q_{surr}}{T} = 4S_{uriv}$

(EX) ¿Will ice melt at ...? [OP.CH16.E16.4]

$$H_{2}(s) \rightarrow H_{2}(k) \qquad A5_{sys} = 22.1 J/k \leftarrow see nut page
\cdot veguives SURR traveler 6.00 kJ to SYS

(b i i + 10.00°c? (283.15k))

+ 10.00°c? (283.15k)

(b i + 10.00°c? (283.15k))$$

(g) AT - 10.00°C	
$AS_{m} = AS_{m} + AS_{m} = AS_{m} + A$	quer/T
A Star Star Star	
$= 22.(\frac{5}{2} + \frac{-6.00235}{2})$	- 0.7 5
K 263.15K	` ' K

 $\Delta S \not\subset \phi$, :. NON - spontaneous $Q \rightarrow 10.00$ °C If SYS gains heat (q), then q is (+) for dS(sys); and q = (+) for dS(surr)

ASIDE (warning: Geek Zone)

http://www2.ucdsb.on.ca/tiss/stretton/chem2/entropy5.htm

H2O(s) ----> H2O(l)

Here is a change that we know is endothermic and occurs with an increase in entropy. At temperatures above 0oC (when the pressure is 1 atm), ice melts because the TS term is bigger than the H term. At lower temperatures, ice doesn't melt because the smaller value of T gives a smaller value for TS and the difference H-TS, is positive.

ASIOCI ASsys for melting is the same at any ferp. Sa

https://www.physicsforums.com/threads/phase-changes-change-of-entropy-is-temperature-independent.846808/

	\rightarrow Π_2	(<i>i</i>) at - 10 C, 0					
т (°С)	т (К)	∆ <i>H</i> ° (J/mol)	∆S° (J/K · mol)	$\Delta S_{surr} = -\frac{\Delta H^{\circ}}{T}$ (J/K · mol)	$\Delta S_{univ} = \Delta S^{\circ} + \Delta S_{surr}$ (J/K · mol)	<i>T∆S</i> ° (J/mol)	$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta$ (J/mol)
-10	263	6.03×10^{3}	22.1	-22.9	-0.8	5.81×10^{3}	$+2.2 \times 10^{2}$
0	273	6.03×10^{3}	22.1	-22.1	0	6.03×10^{3}	0
10	283	6.03×10^{3}	22.1	-21.3	+0.8	6.25×10^{3}	-2.2×10^{2}

This is what I thought to be the most logical explanation of the table myself at the beginning, since solid water does not exist at 10 degrees C (obviously). But my instructor told me that in the formula for Δ Surroundings=- Δ H/T, T designates the temperature of the system. The aim of this table is to make a hypothetical assumption that solid water exists at all three temperatures, and measure the driving force behind its melting.

The 3rd Law of Thermodynamics (Perfect Crystal)	k
	Boltzmann constant
A perfect cuscil at &K const: Turos a single microstate (w=1)	1.38E-23 J/K
$S = k \ln W = k \ln 1 = k \cdot 0 = 0$	
,,,,,,, _	TAVI
, which means	
"The entropy of a pure, perfect crystal at ØK ; zero"	$12^{12} A G = \emptyset$
	$2^{\mu\nu}AS>0$
AS and Thermodynamic Quantities	
All Flerino equilities which apply to SH apply analogously 7. As, including HESS & FORMATION formulas:	ant 5=Ø
クリン $\Delta S = \Sigma n S^o_{298}(prod) - \Sigma n S^o_{298}(react)$	Nov
"BC DE 20 TR	Mour

Free Energy, ΔG [16.4]

For SYSTEM [here, "SYS" subscript omitted]

U = q + w	Senario	ΔG	ΔH	ΔS
	1	_	—	+
$\Delta G = \Delta H - T \Delta S$	2	+	+	—
	3	+/-	+	+
	4	+/-	¢	¢

Inter-relating some Thermodynamic Equations

- · All formulas that apply to AH # AS apply to AG
- · These make up the key THERHODYNAMIK OGANTITIES.
- Tip: When SYS is at EQUIL → AG=0

Lord P
run an experiment
$\Delta G = \Delta G^{\circ} + RTInQ \text{ (not equal)}$ $\Delta G^{\circ} = -RTIn(\textbf{X} \text{ (at equal)})$ $\Delta G^{\circ} = -RTIn(\textbf{X} \text{ (at equal)})$ $\Delta H, \Delta G, \Delta S$ $-molecule level - N^{\circ}$
$\Delta G = \Delta H + T\Delta S$ Hess' Law -equation level-
99

(EX) Calc ΔHrxn for Gummy Bear Combustion [5.9] ¿A gummy bear contains 2.67 g sucrose, C12H22O11 . When it reacts with 7.19 g potassium chlorate, KClO3, 43.7 kJ of heat are produced. Determine the enthalpy change for the reaction, if sucrose is in excess... exus. Trucic: develope CI 2.679 7.199 (F')2* C12 H22011 + 8KClO3 -> 1202 + 11 H20 + 5960 KJ 8 ml KC 122.52 KC = 5,956 = 5960kJ 7.19 gKC mel va CF

Free Energy Equilibrium

