
1412 - E3
CH 17 - Electrochemistry
Notes

Pole Designations

CHAPTER 17: ELECTROCHEMISTRY

Introduction [6.1]

Intro

Electricity - the of electrons

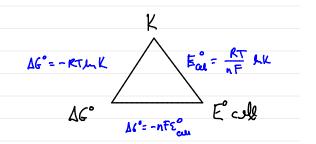
Q: chave do electors one fin?

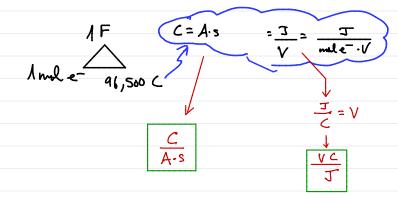
A. Afoms

Q: Ellet happens in a PSOK RXOI? A: Electrons are transferred

Chapter 17: Electrochemistry

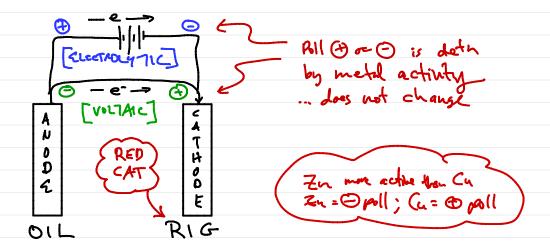
Q: i liky do electrons s Flow?. A: 70 minise / dispuse everyy.


A= # electron one till per V= potabl= hill height

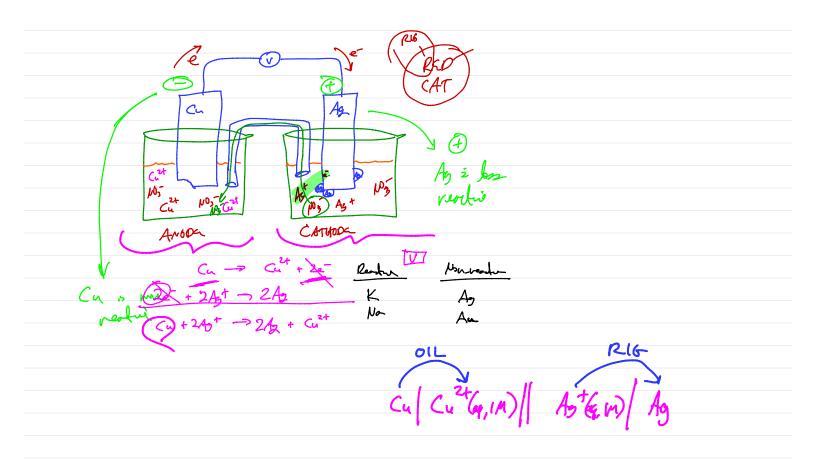

Units & Equations

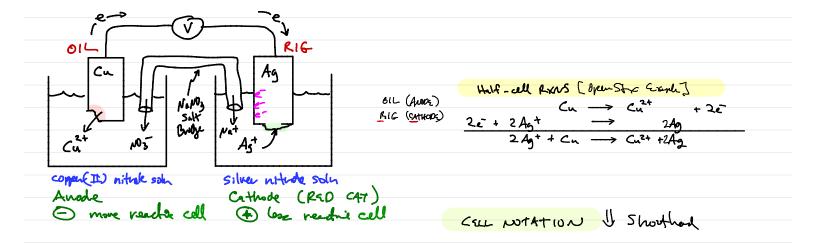
Common Electrical Terms

Quantity	Definition	Measure or Unit
Electric charge	Charge on a proton	1.602 × 10 ⁻¹⁹ C
Electric current	The movement of charge	ampere = A = 1 C/s
Electric potential	The force trying to move the charge	volt = V = J/C
Electric field	The force acting upon other charges in the vicinity	



NOTE: Section 17.1 — the parties which deals we belowing REPOXX Pass will be award in the lab

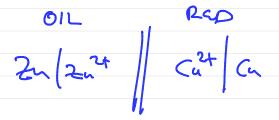

Galvanic Cells [17.2]


Cells: 2- Types @ Voltaic (Battery) - north flow of &

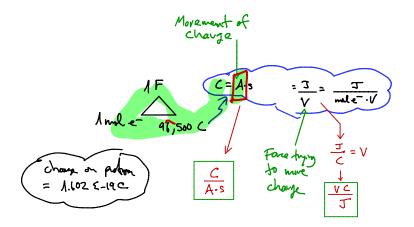
Betweet - forced flow of e-

learn how to differente @ ANODE &. SATHODE ____ ved cat (b) (b) y. (c) ____ or = more active

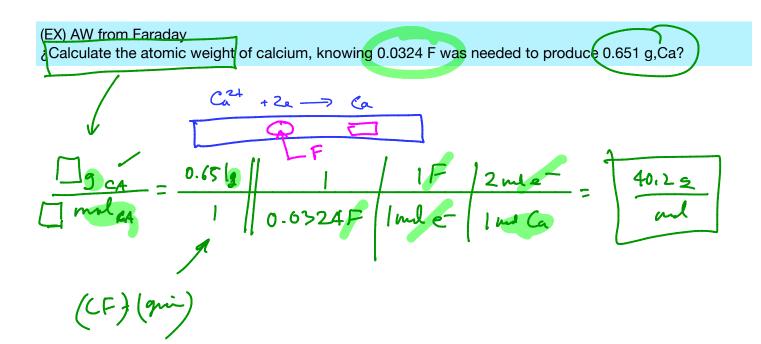
Cuss | Cut(og, LM) | Ag+(og, LM) | As(s)

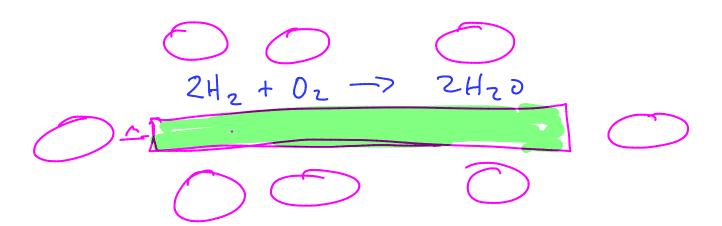

anode (OIL) | cathode (RIG)

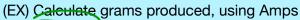
ALL "COETICIENTS" (Grones


(EX) Cell Notation

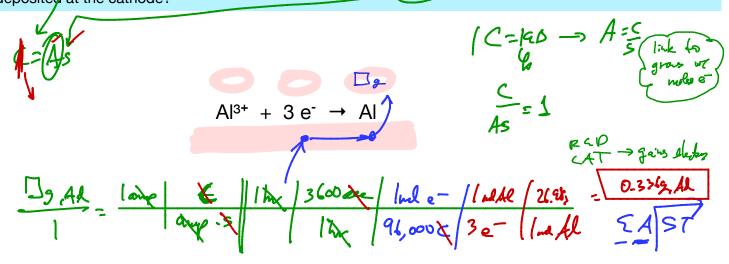
¿Use cell notation to describe a cell in which copper(II) ions are reduced to copper, and Zn metal is oxidized to zinc ions?



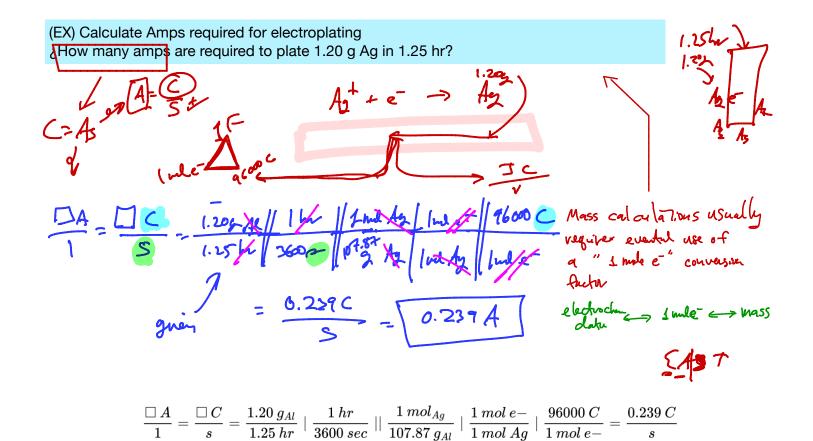

Calculations using Amp and Time and Grams



0.03245



$$rac{\Box \, g \, Ca}{mol} = rac{0.651 \, g}{1} \mid rac{1}{0.0324 \, F} \mid rac{1 \, F}{1 \, mol \, e^-} \mid rac{2 \, mol \, e^-}{1 \, mol \, Ca} = rac{40.2 \, g}{mol}$$



¿A 1.0 amp current is passed through an electrolytic cell for 1.0 hr. How many grams of Al would be deposited at the cathode?

$$\frac{\square \, g_{Al}}{1} = \frac{1 \, amp}{1} \mid \frac{1 \, C}{1 \, amp \, sec} \mid \mid \frac{1 \, hr}{1} \mid \frac{3600 \, sec}{1 \, hr} \mid \mid \frac{1 \, mol \, e^-}{96000 \, C} \mid \frac{1 \, mol_{Al}}{3 \, mol \, e^-} \mid \frac{26.98 \, g}{1 \, mol_{Al}} = \frac{0.336 \, g}{1 \, mol_{Al}} = \frac{1 \, mol_{Al}}{1 \, mol_{Al$$

Standard Reduction Potentials [17.3]

- · SHE (5th Hydrogen Electrode) = grand zero for "potental"

 · Analogous to "C = 200 et F.P. of water.

 2H+ (g. M)+2e- -> Hz (g. 1 atr.) V

Building the STD Reduction Scale

- For any cell voltage meaned in which SHK is one of the
$$\frac{1}{2}$$
-cells, then the voltage of the cell is also the voltage of the other $\frac{1}{2}$ -cell, given $E^{\circ}(SHE) = \emptyset$.

$$\frac{H_{2}(5)}{2} \xrightarrow{\longrightarrow} 2H^{+}(a_{g}) + \frac{E^{\circ}}{2} \left\langle \begin{array}{c} \text{and a} \\ \text{OIL} \\ \text{OIL} \\ \text{Cu}^{2+} + H_{2}(a_{g}) \xrightarrow{\longrightarrow} 2H^{+}(a_{g}) + Cu(a_{g}) \\ \end{array} \right\rangle + 0.337$$

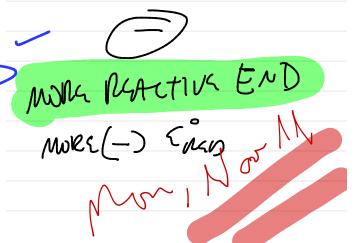
Selected Standard Reduction Potentials at 25 °C

Half-Reaction	E° (V)
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.498
$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.35827
$O_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(l)$	+1.229
$Pt^{2+}(aq) + 2e^{-} \longrightarrow Pt(s)$	+1.20
$Br_2(aq) + 2e^- \longrightarrow 2Br^-(aq)$	+1.0873
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$	+0.7996
$Hg_2^{2+}(aq) + 2e^- \longrightarrow 2Hg(I)$	+0.7973
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.771
$MnO_4^-(aq) + 2H_2O(l) + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.558
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	+0.5355
$\text{NiO}_2(s) + 2\text{H}_2\text{O}(l) + 2\text{e}^- \longrightarrow \text{Ni}(\text{OH})_2(s) + 2\text{OH}^-(aq)$	+0.49
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	+0.337
$\operatorname{Hg}_2\operatorname{Cl}_2(s) + 2e^- \longrightarrow 2\operatorname{Hg}(l) + 2\operatorname{Cl}^-(aq)$	+0.26808
$AgCl(s) + 2e^{-} \longrightarrow Ag(s) + Cl^{-}(aq)$	+0.22233
$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.151
$2H^+(aq) + 2e^- \longrightarrow H_2(g)$	0.00
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	-0.126
$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.1262
$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	-0.257
$\text{Co}^{2+}(aq) + 2e^- \longrightarrow \text{Co}(s)$	-0.28
$PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.3505
$Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$	-0.4030
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	-0.447
$\operatorname{Cr}^{3+}(aq) + 3e^{-} \longrightarrow \operatorname{Cr}(s)$	-0.744
$\operatorname{Mn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Mn}(s)$	-1.185
$Zn(OH)_2(s) + 2e^- \longrightarrow Zn(s) + 2OH^-(aq)$	-1.245

Half-Reaction	E° (V)
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$	-0.7618
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s)$	-1.662
$Mg^2(aq) + 2e^- \longrightarrow Mg(s)$	-2.372
$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \longrightarrow Ca(s)$	-2.868
$Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.912
$K^+(aq) + e^- \longrightarrow K(s)$	-2.931
$\text{Li}^+(aq) + e^- \longrightarrow \text{Li}(s)$	-3.04

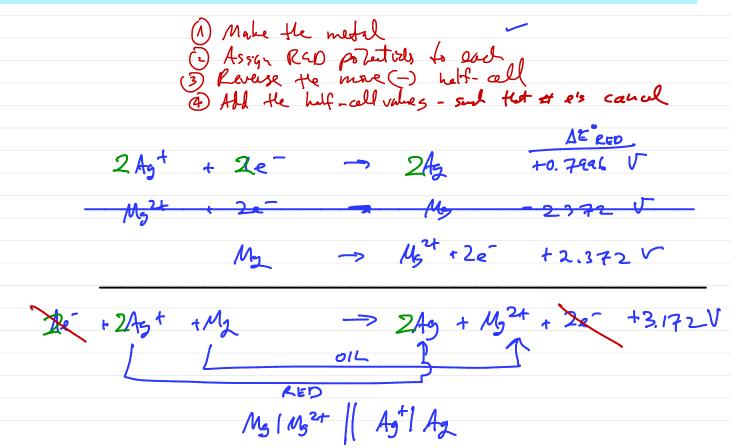
Table 17.2

LESS ACTUR END


MONZ (+) ERGO

Important vide of through

· Taud: Lougest (+) Ecel


i. swap (chy to OXID) au equatris loner on the table.

· Note: Appendix "L' provide extensin list, in alphabotecul order

(EX) Calc E°cell [ex 17.4b]

¿A galvanic cell is composed of an Ag electrode in a 1M AgNO3 solution, and a Mg electrode in 1M Mg(NO3)2 — all at 25°C. What is E°cell?

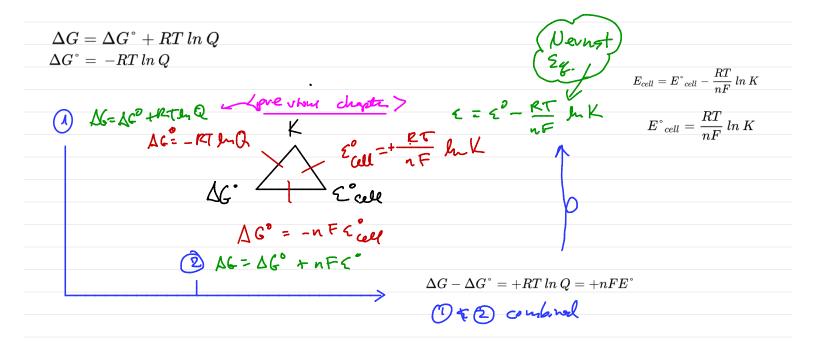
(EX) Calc E°cell [ex 17.4b] ¿A galvanic cell is composed of an Ag electrode in a 1M AgNO3 solution, and a Mg electrode in 1M Mg(NO3)2 — all at 25°C. What is E°cell?

(1) Make the metal
(2) Assign RAD potentials to each
(3) Reverse the mare (-) helf-cell
(4) Ath the helf-cell values

$$A_{3}^{+} + 1e^{-} \rightarrow A_{3} + 0.7996$$

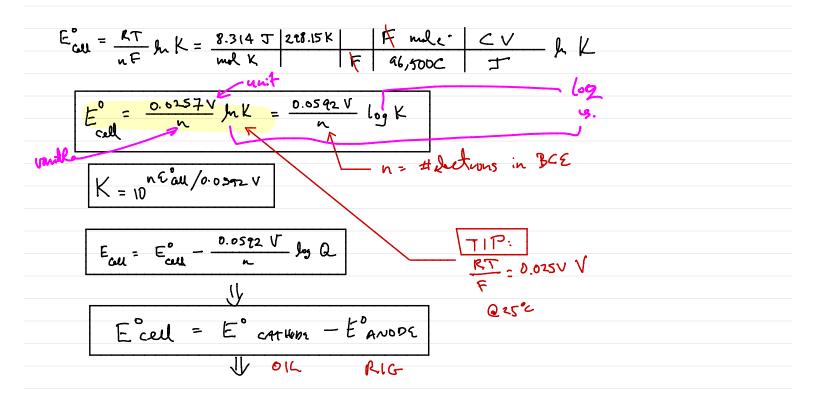
$$M_{3}^{2+} + 1e^{-} \rightarrow M_{3} -2.372$$

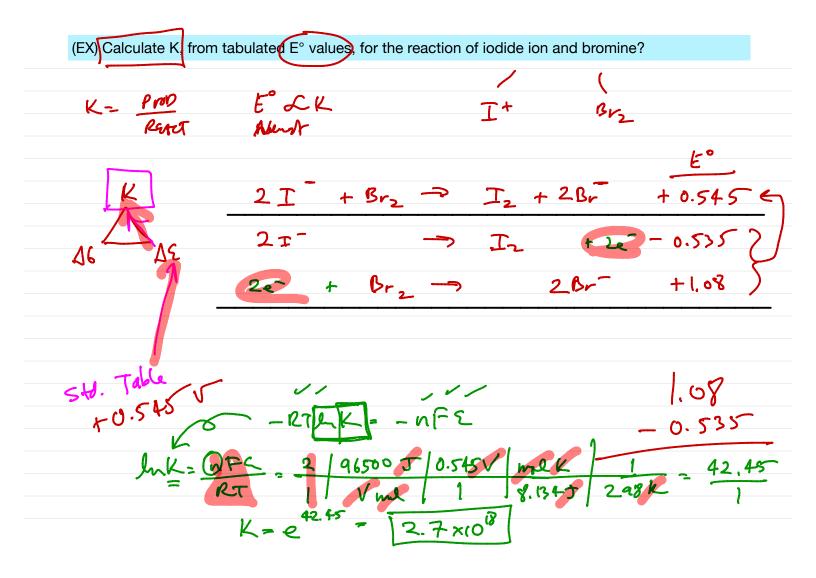
$$2 \times A_{3}^{+} + e^{-} \rightarrow A_{5} + 0.7996$$


$$M_{9} \rightarrow M_{9}^{2+} + 2e + 2.372$$

$$M_{9} + 2A_{9}^{+} \rightarrow M_{9}^{2+} + 2A_{9} + 3.172 V$$

$$M_{9} + 2A_{9}^{+} \rightarrow M_{9}^{2+} + 2A_{9} + 3.172 V$$


$$M_{1} = M_{1}^{2+} + M_{1}^{2+} + M_{2}^{2+} + M_{3}^{2+} + M_{4}^{2+} +$$


The Nernst Equation [17.4]

$$\Delta G^{\circ} = -nFE^{\circ}_{\;\;cell}$$
 $\Delta G = \Delta G^{\circ} + nFE^{\circ}_{\;\;cell}$

$$E=E^{\circ}-rac{RT}{nF}\,ln\,K$$

(EX) Calculate K, from tabulated E° values, for the reaction of iodide ion and bromine?

$$2T^{-} + Bv_{2} = T_{2} + 2b^{-}$$

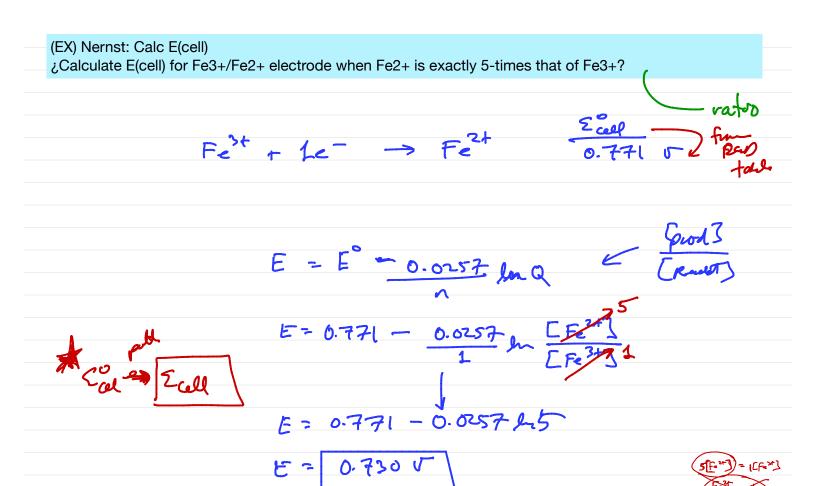
$$2T^{-} + Bv_{2} = T_{2} + 2b^{-}$$

$$2T^{-} + Av_{2} = 2b^{-} + 1.08 \text{ V}$$

$$+ 0.545 \text{ V}$$

8.514
$$\sqrt{\frac{8.514}{2}}$$

Memst


We-

We-

$$lnK = rac{nFE}{RT} = rac{2}{1} imes rac{96500J}{V\ mol} imes rac{0.545V}{1} imes rac{mol\ K}{8.134J} imes rac{1}{298K} = rac{42.45}{1}$$
 $e^{ln\ K} = e^{42.45}$

$$K = e^{42.45} = 2.7E18$$

$$A_{K} = \frac{n \xi}{0.0257 \text{ V}} = \frac{2 | 0.545 \text{ V}}{0.0277 \text{ V}} = 42.42$$

2 Naxt, Ilesh-out Nevert EG:

Translation

$$Fe^{24} = 5 Fe^{34}$$
 $Fe^{24} = 5 Fe^{34}$
 $Fe^{24} = 5 Fe^{34}$
 $Fe^{34} = 5 Fe^{34}$
 $Fe^{34} = 5 Fe^{34}$

Batteries and Fuel Cells [17.5]

Types

Primary — non re-chargealbe

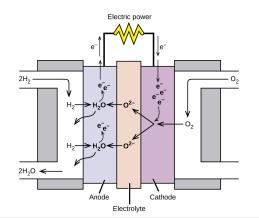
$$- \text{D-y Cel}(2MnO2 (s) + 2NH4 Cl(aq) + Zn(s) -> Zn(aq) + Mn2 O3(s) + 2NH3 (aq) + H2O(l) + 2Cl-2MnO2 (s) + 2NH3 (aq) + H2O(l) + 2Cl-2MnO2 (s) + 2NH3 (aq) + H2O(l) + 2Cl-2MnO2 (s) + 2NH3 (aq) + Mn2 O3(s) + 2NH3 (aq) + H2O(l) + 2Cl-2MnO2 (s) + 2NH3 (aq) + Mn2 O3(s) + Mn2$$

$$Zn(s) + 2MnO2(s) \rightarrow ZnO(s) + Mn2O3(s)$$

Secondary — re-chargealbe

$$Cd(s) + NiO2 (s) + 2H2O(l) = Cd(OH)2(s) + Ni(OH)2(s)$$

$$LiCoO2 + x C6 \rightleftharpoons Lix-1 CoO2 + x LiC6$$


- Level Azrol

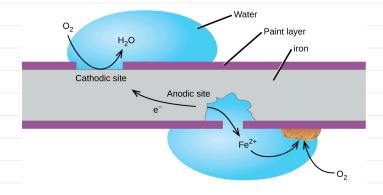
Fuel Cell — requires continuous source of fuel

A:
$$2H_1 + 20^2 \rightarrow 2H_20 + 4e - \frac{C}{2} + \frac{4c}{2} + \frac{6}{2} + \frac{20^2}{2}$$

wh: $2H_1 + 0_2 \rightarrow 2H_2^2 \rightarrow 2H_2^2 = \frac{6}{2} = 0.8V$

OIL AWPL

RIG CATUODS

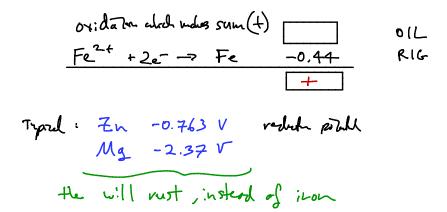

Corrosion [17.6]

def: degradation of metals du to electrodençal proasses.

Corrosion of Iron

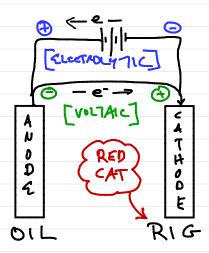
A:
$$Fe(s) \longrightarrow Fe^{2t}(aq) + 2e^{-} + 0.44 \text{ V}$$

C: $4e + 026) + 2H^{+}(aq) \longrightarrow 2Fe^{2t}(ag) + 2H^{+}(aq) \rightarrow 2Fe_{2}0_{3} \cdot \times H_{2}0 + 8H^{*}(aq) + 1.17 \text{ V}$



Methods of Prevention

- ① Cathode Protection connect to sacrificial anode made of a more active metal
- ② Galvanization (zinc plated)
 - Zn > Fe, therefore, Zn will rust
 - see on some ships
- ③ Painting
- 4 Neutralizer
- ⑤ Filmers


Sacrificial Anode

- · oxidation does the damage
- want more important metal to NOT corrode, so, pair it with a more active (and hopefully cheap, and structurally unimportant) metal

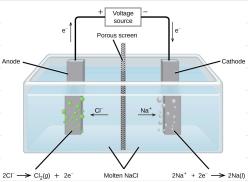
Electrolysis and Electrolytic Cells [17.7]

- Opposite of Galvinic: here, electrical energy causes chain vent on (and not the otter was around).

PROMPT: ¿If Na is so reactive, where is it found?

ANShape:

Electrolysis of Molten Sodium Chloride

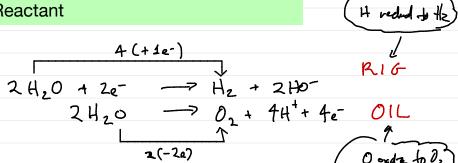

A.
$$2U(x) \rightarrow U_2 + 2e^- - 13V$$

$$C = + NA(x) \rightarrow NA(x) - 2.7V$$

$$2Na^{A}(x) + 2U(x) \rightarrow 2Na(x) + Cl_{2}(3) - 4.0V$$

To get uxu to go, must supply intriacin of 4 v

Down's Cell -

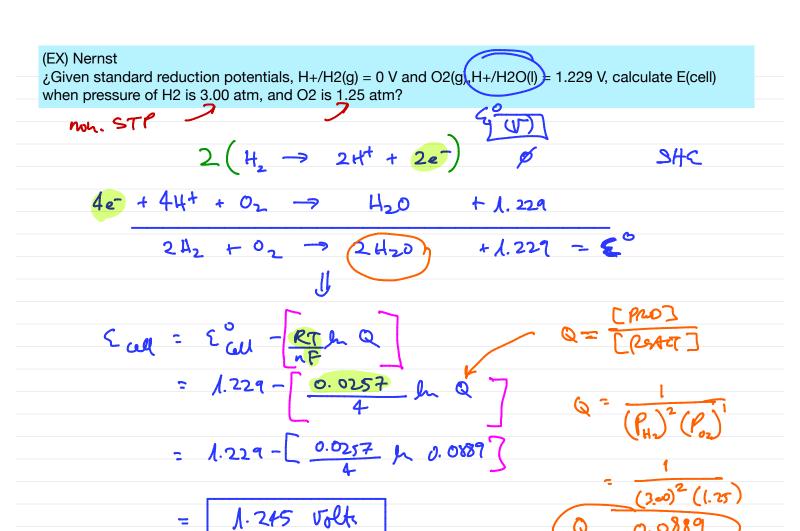

(EX) Reaction Spontaneity ¿During the manufacture of Na metal, how many volts of electricity are produced?
¿Burning the manufacture of Na metal, now many voits of electricity are produced:
Avenue: NONE. The calabotion shows a not negative (-) voltage, so 4 volts has to be applied to get the vere for to go. (As you know, Nor does not spectages form)
(As you know, No does not spectared forms)

SKIP

Electrolysis of Aqueous NaCl

SKIP

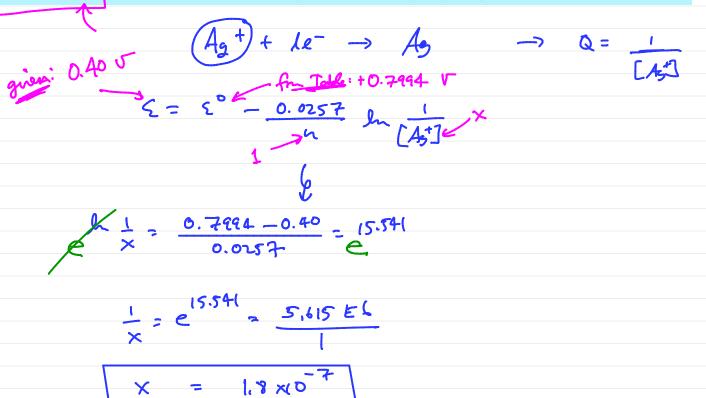
Water as Reactant


Oxid-Red of Carbon (examples of Oxidation Numbers)

General Observations

- OXID # of C increases with increasing # of OXYGENS (more oxygens, higher ON)
- OXID # of C increases with increasing bond multiplocity (single < double < triple)

	TIP: metals are reduced; and their ions are oxidized
(E) (I) (I)	
	alculate # e's
¿Calcu	ulate the number of electrons that have a total charge of 1 coulomb?
	$e^{-\frac{1}{12}}C 1 \text{ mol } e^{-} 6.02E23 e^{-} 6.24E18 e^{-}$
	$rac{e}{1} = rac{10C}{1} + rac{1mole^-}{96000C} + rac{6.02E23e^-}{1mole^-} = rac{6.24E18e^-}{1}$
1	1 + 96000 C + 1 mole = 1


(EX) Nernst

¿Given standard reduction potentials, H+/H2(g) = 0 V and O2(g), H+/H2O(l) = 1.229 V, calculate E(cell) when pressure of H2 is 3.00 atm, and O2 is 1.25 atm?

$$\frac{2(H_2 \longrightarrow 2H^+ + 2e^-)}{4e^- + 4H^+ * O_2 \longrightarrow 2H_2O} \xrightarrow{L.229} \xrightarrow{\text{picked to the picked to the picke$$

(EX) Nernst: calculate concentration

What is the [Ag+] in a half cell if the reduction potential of the Ag+/Ag couple is 0.40 V?

(EX) Nernst: calculate concentration

¿What is the [Ag+] in a half cell if the reduction potential of the Ag+/Ag couple is 0.40 V?