Chemistry 2e 13: Fundamental Equilibrium Concepts 13.1: Chemical Equilibria

1. What does it mean to describe a reaction as "reversible"? Solution

The reaction can proceed in both the forward and reverse directions.

3. If a reaction is reversible, when can it be said to have reached equilibrium? Solution

When a system has reached equilibrium, no further changes in the reactant and product concentrations occur; the forward and reverse reactions continue to proceed, but at equal rates.

5. If the concentrations of products and reactants are equal, is the system at equilibrium? Solution

Not necessarily. A system at equilibrium is characterized by *constant* reactant and product concentrations, but the values of the reactant and product concentrations themselves need not be equal.

Chemistry 2e 13: Fundamental Equilibrium Concepts 13.2: Equilibrium Constants

7. Explain why an equilibrium between $Br_2(l)$ and $Br_2(g)$ would not be established if the container were not a closed vessel shown in Figure 13.4.

Solution

Equilibrium cannot be established between the liquid and the gas phase if the top is removed from the bottle because the system is not closed; one of the components of the equilibrium, the Br₂ vapor, would escape from the bottle until all liquid disappeared. Thus, more liquid would evaporate than can condense back from the gas phase to the liquid phase.

9. Among the solubility rules previously discussed is the statement: All chlorides are soluble except Hg₂Cl₂, AgCl, PbCl₂, and CuCl.

(a) Write the expression for the equilibrium constant for the reaction represented by the equation AgCl(s) $\exists \Box \Box \Rightarrow Ag^+(aq) + Cl^-(aq)$. Is $K_c > 1, < 1$, or ≈ 1 ? Explain your answer.

(b) Write the expression for the equilibrium constant for the reaction represented by the equation $Pb^{2+}(aq) + 2Cl^{-}(aq) \square \square PbCl_{2}(s)$. Is $K_{c} > 1, < 1$, or ≈ 1 ? Explain your answer.

Solution

(a) $K_c = [Ag^+][Cl^-] < 1$. AgCl is insoluble; thus, the concentrations of ions are much less than 1 M;

(b) $K_c = \frac{1}{\left[Pb^{2+}\right]\left[Cl^{-}\right]^2} > 1$ because PbCl₂ is insoluble and formation of the solid will reduce

the concentration of ions to a low level (< 1 M).

11. Benzene is one of the compounds used as octane enhancers in unleaded gasoline. It is manufactured by the catalytic conversion of acetylene to benzene: $3C_2H_2(g) \square \square C_6H_6(g)$. Which value of K_c would make this reaction most useful commercially? $K_c \approx 0.01$, $K_c \approx 1$, or $K_c \approx 10$. Explain your answer.

Solution

Since $K_c = \frac{[C_6H_6]}{[C_2H_2]^3}$, a value of $K_c \approx 10$ means that C₆H₆ predominates over C₂H₂. In such a

case, the reaction would be commercially feasible if the rate to equilibrium is suitable.

13. For a titration to be effective, the reaction must be rapid and the yield of the reaction must essentially be 100%. Is $K_c > 1$, < 1, or ≈ 1 for a titration reaction?

Solution

 $K_c > 1$; the product must be formed in overwhelmingly large proportions.

15. Write the mathematical expression for the reaction quotient, Q_c , for each of the following reactions:

- (a) $CH_4(g) + Cl_2(g) \square \square CH_3Cl(g) + HCl(g)$
- (b) $N_2(g) + O_2(g) \square \square 2NO(g)$
- (c) $2SO_2(g) + O_2(g) \square \square 2SO_3(g)$
- (d) $BaSO_3(s) \square \square BaO(s) + SO_2(g)$

(e) $P_4(g) + 5O_2(g) \square \square P_4O_{10}(s)$ (f) $Br_2(g) = 2Br(g)$ (g) $CH_4(g) + 2O_2(g) = O_2(g) + 2H_2O(l)$ (h) $CuSO_4 \Box 5H_2O(s) \Box \Box CuSO_4(s) + 5H_2O(g)$ Solution (a) $Q_c = \frac{[CH_3Cl][HCl]}{[CH_4][Cl_2]}$; (b) $Q_c = \frac{[NO]^2}{[N_2][O_2]}$; (c) $Q_c = \frac{[SO_3]^2}{[SO_1]^2[O_1]}$; (d) $Q_c = [SO_2]$; (e) $Q_{c} = \frac{1}{[P_{c}][O_{c}]^{5}};$ (f) $Q_{c} = \frac{[Br]^{2}}{[Br_{2}]};$ (g) $Q_{c} = \frac{[CO_{2}]}{[CH_{4}][O_{2}]^{2}};$ (h) $Q_{c} = [H_{2}O]^{5}$ 17. The initial concentrations or pressures of reactants and products are given for each of the following systems. Calculate the reaction quotient and determine the direction in which each system will proceed to reach equilibrium. (a) $2NH_3(g) = 100 M$, $N_2(g) + 3H_2(g) = 17$; $[NH_3] = 0.20 M$, $[N_2] = 1.00 M$, $[H_2] = 1.00 M$ 1.00 M (b) $2NH_3(g) \square \square N_2(g) + 3H_2(g)$ $K_P = 6.8 \times 10^4$; $NH_3 = 3.0$ atm, $N_2 = 2.0$ atm, H_2 = 1.0 atm(c) $2SO_3(g) = 2SO_2(g) + O_2(g)$ $K_c = 0.230; [SO_3] = 0.00 M, [SO_2] = 1.00 M,$ $[O_2] = 1.00 M$ (d) $2SO_3(g) = 2SO_2(g) + O_2(g)$ $K_p = 16.5$; $SO_3 = 1.00$ atm, $SO_2 = 1.00$ atm, $O_2 = 0.00$ a 1.00 atm $K_c = 4.6 \times 10^4$; [NO] = 1.00 *M*, [Cl₂] = 1.00 *M*, (e) $2NO(g) + Cl_2(g) \square \square 2NOCl(g)$ [NOC1] = 0 M(f) $N_2(g) + O_2(g) = 2NO(g)$ $K_p = 0.050; NO = 10.0 \text{ atm}, N_2 = O_2 = 5 \text{ atm}$ Solution (a) $Q_c = \frac{[N_2][H_2]^3}{[NH_2]^2} = \frac{(1.00)(1.00)^3}{(0.20)^2} = 25$ $Q_c > K_c$, proceeds left; (b) $Q_P = \frac{P_{N_2}(P_{H_2})^3}{(P_{H_2})^2} = \frac{(2.0)(1.0)^3}{(3.0)^2} = 0.22$ $Q_P < K_P$, proceeds right; (c) $Q_c = \frac{[SO_2]^2[O_2]}{[SO_2]^2} = \frac{(1.00)^2(1.00)}{(0)} = undefined$ $Q_c > K_c$, proceeds left; (d) $Q_P = \frac{(P_{SO_2})^2 P_{O_2}}{(P_{SO_2})^2} = \frac{(1.00)^2 (1.00)}{(1.00)^2} = 1.00$ $Q_P < K_P$, proceeds right;

(e)
$$Q_P = \frac{(P_{\text{NOCI}})^2}{(P_{\text{NO}})^2 P_{\text{Cl}_2}} = \frac{(0)^2}{(1.00)^2 (1.00)} = 0$$

 $Q_P < K_P$, proceeds right;

(f)
$$Q_c = \frac{[NO]^2}{[N_2][O_2]} = \frac{(10.0)^2}{(5.00)(5.00)} = 4$$

 $Q_c > K_c$, proceeds left

19. The following reaction has $K_P = 4.50 \times 10^{-5}$ at 720 K.

$$N_2(g) + 3H_2(g) \square \square 2NH_3(g)$$

If a reaction vessel is filled with each gas to the partial pressures listed, in which direction will it shift to reach equilibrium? $P(NH_3) = 93$ atm, $P(N_2) = 48$ atm, and $P(H_2) = 52$ atm Solution

The reaction quotient expression for this problem is $Q_p = \frac{(P_{\rm NH_3})^2}{(P_{\rm N_2})(P_{\rm H_2})^3}$. Plugging in the given

values of partial pressures gives $\frac{(93)^2}{((48) \times (52)^3)}$, so $Q_p = 1.3 \times 10^{-3}$. Since this value is larger

than K_P (4.50 × 10⁻⁵), the system will shift toward the reactants to reach equilibrium. 21. Which of the systems described in Exercise 15 are homogeneous equilibria? Which are heterogeneous equilibria?

Solution

(a) homogenous; (b) homogenous; (c) homogenous; (d) heterogeneous; (e) heterogeneous; (f) homogenous; (g) heterogeneous; (h) heterogeneous

23. For which of the reactions in Exercise 15 does K_c (calculated using concentrations) equal K_P (calculated using pressures)?

Solution

When the number of gaseous components are the same on both sides of the equilibrium expression, K_c will equal K_P . This situation occurs in (a) and (b).

25. Convert the values of K_c to values of K_P or the values of K_P to values of K_c .

(a) $N_2(g) + 3H_2(g) \square \square 2NH_3(g)$ $K_c = 0.50 \text{ at } 400 \text{ °C}$

(b) $H_2 + I_2 = 2HI$ $K_c = 50.2 \text{ at } 448 \text{ °C}$

(c) Na₂SO₄ • 10H₂O(s) \square \square Na₂SO₄(s) + 10H₂O(g) $K_P = 4.08 \times 10^{-25}$ at 25 °C

(d)
$$H_2O(l) \square \square H_2O(g)$$
 $K_P = 0.122 \text{ at } 50 \text{ °C}$

Solution

 $K_p = K_c (RT)^{\Delta n}$, where Δn is the sum of gaseous products minus the sum of gaseous reactants. (a) $\Delta n = (2) - (1+3) = -2$, $K_P = 0.50[0.08206 \times 673.15]^{-2} = 1.6 \times 10^{-4}$; (b) $\Delta n = (2) - (1+1) = 0$, $K_P = K_c (RT)^0 = K_c = 50.2$; (c) $\Delta n = (10) - (0) = 10$, $K_c = K_P (RT)^{-\Delta n}$, $K_c = 4.08 \times 10^{-25}[0.08206 \times 298.15]^{-10} = 5.34 \times 10^{-39}$; (d) $\Delta n = (1) - (0) = 1$, $K_c = 0.122(0.08206 \times 323.15)^{-1} = 4.60 \times 10^{-3}$

27. What is the value of the equilibrium constant expression for the change $H_2O(l) \square \square H_2O(g)$ at 30 °C? (see Appendix E) Solution

The equilibrium expression for this transformation is $K_p = P_{H_2O}$. The vapor pressure of H₂O at 30 °C is 31.8 torr. Converting to atmospheres gives 31.8 torr $\times \frac{1 \text{ atm}}{760 \text{ torr}} = 0.042 \text{ atm}$. Therefore, $K_p = P_{H_2O} = 0.042$. 29. Write the reaction quotient expression for the ionization of NH₃ in water. Solution NH₃(*aq*) + H₂O(*l*) $\square \square NH_4^+(aq) + OH^-(aq)$. Because the concentration of water is a constant, the term [H₂O] is normally incorporated into the reaction quotient as well as the final equilibrium constant. $Q_c = \frac{[NH_4^+][OH^-]}{[NH_3]}$

Chemistry 2e 13: Fundamental Equilibrium Concepts 13.3: Shifting Equilibria: Le Châtelier's Principle

31. The following equation represents a reversible decomposition:

 $CaCO_3(s)$ \Box \Box $CaO(s) + CO_2(g)$

Under what conditions will decomposition in a closed container proceed to completion so that no CaCO₃ remains?

Solution

The amount of CaCO₃ must be so small that P_{CO_2} is less than K_P when the CaCO₃ has completely

decomposed. In other words, the starting amount of CaCO₃ cannot completely generate the full P_{CO_3} required for equilibrium.

33. What property of a reaction can we use to predict the effect of a change in temperature on the value of an equilibrium constant?

Solution

The change in enthalpy may be used. If the reaction is exothermic, the heat produced can be thought of as a product. If the reaction is endothermic the heat added can be thought of as a reactant. Additional heat would shift an exothermic reaction back to the reactants but would shift an endothermic reaction to the products. Cooling an exothermic reaction causes the reaction to shift toward the product side; cooling an endothermic reaction would cause it to shift to the reactants' side.

34. The following reaction occurs when a burner on a gas stove is lit:

 $CH_4(g) + 2O_2(g)$

Is an equilibrium among CH₄, O₂, CO₂, and H₂O established under these conditions? Explain your answer.

Solution

No, it is not at equilibrium. Because the system is not confined, products continuously escape from the region of the flame; reactants are also added continuously from the burner and surrounding atmosphere.

36. Suggest four ways in which the concentration of hydrazine, N₂H₄, could be increased in an equilibrium described by the following equation:

 $N_2(g) + 2H_2(g) \square \square N_2H_4(g) \qquad \Delta H = 95 \text{ kJ}$

Solution

Add N₂; add H₂; decrease the container volume; heat the mixture.

38. How will an increase in temperature affect each of the following equilibria? How will a decrease in the volume of the reaction vessel affect each?

(a) $2NH_3(g) \square \square N_2(g) + 3H_2(g)$ $\Delta H = 92 \text{ kJ}$

(b)
$$N_2(g) + O_2(g) \square \square 2NO(g)$$
 $\Delta H = 181 \text{ kJ}$

(c)
$$2O_3(g) \blacksquare \blacksquare 3O_2(g)$$
 $\Delta H = -285 \text{ kJ}$

(d)
$$\operatorname{CaO}(s) + \operatorname{CO}_2(g) \square \square \square \operatorname{CaCO}_3(s) \qquad \Delta H = -176 \text{ kJ}$$

Solution

(a) T increase = shift right, V decrease = shift left; (b) T increase = shift right, V decrease = no effect; (c) T increase = shift left, V decrease = shift left; (d) T increase = shift left, V decrease = shift right.

13.3: Shifting Equilibria: Le Châtelier's Principle

40. Methanol can be prepared from carbon monoxide and hydrogen at high temperature and pressure in the presence of a suitable catalyst.

(a) Write the expression for the equilibrium constant (K_c) for the reversible reaction

 $2H_2(g) + CO(g) \square \square CH_3OH(g)$ $\Delta H = -90.2 \text{ kJ}$

(b) What will happen to the concentrations of H₂, CO, and CH₃OH at equilibrium if more H₂ is added?

(c) What will happen to the concentrations of H₂, CO, and CH₃OH at equilibrium if CO is removed?

(d) What will happen to the concentrations of H₂, CO, and CH₃OH at equilibrium if CH₃OH is added?

(e) What will happen to the concentrations of H₂, CO, and CH₃OH at equilibrium if the temperature of the system is increased?

(f) What will happen to the concentrations of H_2 , CO, and CH_3OH at equilibrium if more catalyst is added?

Solution

(a) $K_c = \frac{[CH_3OH]}{[H_2]^2[CO]}$; (b) [H₂] increases, [CO] decreases, [CH₃OH] increases; (c) [H₂]

increases, [CO] decreases, [CH₃OH] decreases; (d) [H₂] increases, [CO] increases, [CH₃OH] increases; (e) [H₂] increases, [CO] increases, [CH₃OH] decreases; (f) no changes.

42. Water gas, a mixture of H_2 and CO, is an important industrial fuel produced by the reaction of steam with red hot coke, essentially pure carbon.

(a) Write the expression for the equilibrium constant for the reversible reaction

 $C(s) + H_2O(g) \square \square CO(g) + H_2(g)$ $\Delta H = 131.30 \text{ kJ}$

(b) What will happen to the concentration of each reactant and product at equilibrium if more C is added?

(c) What will happen to the concentration of each reactant and product at equilibrium if H₂O is removed?

(d) What will happen to the concentration of each reactant and product at equilibrium if CO is added?

(e) What will happen to the concentration of each reactant and product at equilibrium if the temperature of the system is increased?

Solution

(a) $K_c = \frac{[CO][H_2]}{[H_2O]}$; (b) [H₂O] no change, [CO] no change, [H₂] no change; (c) [H₂O]

decreases, [CO] decreases, [H₂] decreases; (d) [H₂O] increases, [CO] increases, [H₂] decreases; (e) [H₂O] decreases, [CO] increases, [H₂] increases. In (b), (c), (d), and (e), the mass of carbon will change, but its concentration (activity) will not change.

44. Ammonia is a weak base that reacts with water according to this equation:

 $NH_3(aq) + H_2O(l) \square \square NH_4^+(aq) + OH^-(aq)$

Will any of the following increase the percent of ammonia that is converted to the ammonium ion in water?

(a) Addition of NaOH

(b) Addition of HCl

(c) Addition of NH₄Cl

Solution

Only (b). In (a), addition of a strong base forces the equilibrium toward forming more $NH_3(aq)$. In (b), the addition of HCl consumes OH^- , shifting the equilibrium right and increasing the conversion of NH_3 to NH_4^+ . In (c), NH_4^+ ion causes the equilibrium to shift to the left, forming

more $NH_3(aq)$.

46. Suggest two ways in which the equilibrium concentration of Ag^+ can be reduced in a solution of Na^+ , Cl^- , Ag^+ , and NO_3^- , in contact with solid AgCl.

 $Na^{+}(aq) + Cl^{-}(aq) + Ag^{+}(aq) + NO_{3}^{-}(aq) \blacksquare \blacksquare AgCl(s) + Na^{+}(aq) + NO_{3}^{-}(aq)$

$\Delta H = -65.9 \text{ kJ}$

Solution

Add NaCl or some other salt that produces Cl^- to the solution. Cooling the solution forces the equilibrium to the right, precipitating more AgCl(s).

48. A solution is saturated with silver sulfate and contains excess solid silver sulfate:

 $Ag_2SO_4(s) \rightleftharpoons 2Ag^+(aq) + SO_4^{2-}(aq)$

A small amount of solid silver sulfate containing a radioactive isotope of silver is added to this solution. Within a few minutes, a portion of the solution phase is sampled and tests positive for radioactive Ag^+ ions. Explain this observation.

Solution

Though the solution is saturated, the dynamic nature of the solubility equilibrium means the opposing processes of solid dissolution and precipitation continue to occur (just at equal rates, meaning the dissolved ion concentrations and the amount of undissolved solid remain constant). The radioactive Ag^+ ions detected in the solution phase come from dissolution of the added solid, and their presence is countered by precipitation of nonradioactive Ag^+ .

Chemistry 2e 13: Fundamental Equilibrium Concepts 13.4: Equilibrium Calculations

50. A reaction is represented by this equation:

 $A(aq) + 2B(aq) = 1 \times 10^3$

(a) Write the mathematical expression for the equilibrium constant.

(b) Using concentrations $\leq 1 M$, identify two sets of concentrations that describe a mixture of A, B, and C at equilibrium.

Solution

 $K_c = \frac{[C]^2}{[A][B]^2}$. There are many different sets of equilibrium concentrations; two are [A] = 0.1

M, [B] = 0.1 *M*, [C] = 1 *M*; and [A] = 0.01, [B] = 0.250, [C] = 0.791.

52. What is the value of the equilibrium constant at 500 $^{\circ}$ C for the formation of NH₃ according to the following equation?

 $N_2(g) + 3H_2(g) \square \square 2NH_3(g)$

An equilibrium mixture of NH₃(*g*), H₂(*g*), and N₂(*g*) at 500 °C was found to contain 1.35 *M* H₂, 1.15 *M* N₂, and 4.12 × 10⁻¹*M* NH₃.

Solution

The reaction may be written as

 $N_2(g) + 3H_2(g) \square \square 2NH_3(g)$

The equilibrium constant for the reaction is

$$K_c = \frac{[\mathrm{NH}_3]^2}{[\mathrm{N}_2][\mathrm{H}_2]^3} = \frac{(4.12 \times 10^{-1})^2}{(1.15)(1.35)^3}$$
$$= 0.0600 = 6.00 \times 10^{-2}$$

54. A 0.72-mol sample of PCl₅ is put into a 1.00-L vessel and heated. At equilibrium, the vessel contains 0.40 mol of PCl₃(g) and 0.40 mol of Cl₂(g). Calculate the value of the equilibrium constant for the decomposition of PCl₅ to PCl₃ and Cl₂ at this temperature.

Solution

The decomposition of PCl₅ to PCl₃ and Cl₂ is given as

$$\operatorname{PCl}_{5}(g) \blacksquare \bigoplus \operatorname{PCl}_{3}(g) + \operatorname{Cl}_{2}(g)$$

$$K_c = \frac{[\mathrm{PCl}_3][\mathrm{Cl}_2]}{[\mathrm{PCl}_5]}$$

Let x = change in [PCl₅].

	[PCI ₅]	[PCI ₃]	[Cl ₂]
Initial concentration (M)	0.72	0	0
Change (<i>M</i>)	-x	x	x
Equilibrium concentration (M)	0.72 - x = 0.32	0 + x = 0.40	0 + x = 0.40
$K_c = \frac{(0.40)(0.40)}{(0.32)} = 0.50$			

56. Calculate the value of the equilibrium constant K_P for the reaction

 $2NO(g) + Cl_2(g) \square \square 2NOCl(g)$ from these equilibrium pressures: NO, 0.050 atm; Cl₂, 0.30 atm; NOCl, 1.2 atm.

Solution

$$K_p = \frac{[\text{NOCl}]^2}{[\text{NO}]^2[\text{Cl}_2]} = \frac{(1.2)^2}{(0.050)^2(0.30)} = \frac{1.44}{(2.5 \times 10^{-3})(0.30)} = 1.9 \times 10^3$$

58. A sample of ammonium chloride was heated in a closed container.

 $NH_4Cl(s)$ \square $III_3(g) + HCl(g)$

At equilibrium, the pressure of $NH_3(g)$ was found to be 1.75 atm. What is the value of the equilibrium constant K_P for the decomposition at this temperature? Solution

Because the decomposition must generate the same pressure of HCl as NH₃, 1.75 atm of HCl must be present. $K_p = P_{NH_3}P_{HCl} = (1.75 \text{ atm})(1.75 \text{ atm}) = 3.06$

60. Complete the partial ICE tables below. (a)

 $2SO_3(g) = \square \square 2SO_2(g) + O_2(g)$

change ____ +*x* (b) $4NH_3(g) + 3O_2(g) = 2N_2(g) + 6H_2O(g)$ change ____ +x(c) $2CH_4(g)$ \square \square $C_2H_2(g) + 3H_2(g)$ change +x(d) $CH_4(g) + H_2O(g) \square \square CO(g) + 3H_2(g)$ change +x_____ (e) $\operatorname{NH}_4\operatorname{Cl}(s)$ \square \square $\operatorname{NH}_3(g)$ + $\operatorname{HCl}(g)$ change +x(f) Ni(s) + 4CO(g) \overrightarrow{P} $Ni(CO)_4(g)$ change +xSolution (a) -2x, +2x; (b) $+\frac{4}{3}x$, $-\frac{2}{3}x$, -2x; (c) -2x, +3x; (d) +x, -x, -3x; (e) +x; (f) $-\frac{1}{4}x$ 62. Why are there no changes specified for Ni in Exercise 60, part (f)? What property of Ni does change?

Solution

Activities of pure crystalline solids equal 1 and are constant; however, the mass of Ni does change.

64. Analysis of the gases in a sealed reaction vessel containing NH₃, N₂, and H₂ at equilibrium at 400°C established the concentration of N₂ to be 1.2 *M* and the concentration of H₂ to be 0.24 *M*.

 $N_2(g) + 3H_2(g) \square \square 2NH_3(g)$ $K_c = 0.50 \text{ at } 400 \text{ °C}$

Calculate the equilibrium molar concentration of NH₃.

Solution

Write the equilibrium constant expression and solve for [NH₃].

$$K_c = \frac{[\mathrm{NH}_3]^2}{[\mathrm{N}_2][\mathrm{H}_2]^3} = \frac{[\mathrm{NH}_3]^2}{[1.2][0.24]^3} = 0.50$$

 $[NH_3]^2 = 1.2 \times (0.24)^3 \times 0.50 = 0.0083$ $[NH_3] = 9.1 \times 10^{-2} M$

66. What is the pressure of BrCl in an equilibrium mixture of Cl_2 , Br_2 , and BrCl if the pressure of Cl_2 in the mixture is 0.115 atm and the pressure of Br_2 in the mixture is 0.450 atm?

 $Cl_2(g) + Br_2(g) = 2BrCl(g)$ $K_p = 4.7 \times 10^{-2}$

Solution

Write the equilibrium constant expression and solve for P_{BrCl} .

$$K_P = \frac{(P_{\text{BrCl}})^2}{P_{\text{Cl}_2}P_{\text{Br}_2}} = \frac{(P_{\text{BrCl}})^2}{(0.115)(0.450)} = 4.7 \times 10^{-2}$$

$$(P_{\rm BrCl})^2 = 0.115 \times 0.450 \times 4.7 \times 10^{-2} = 2.43 \times 10^{-3}$$
 atm

 $P_{\rm BrCl} = 4.9 \times 10^{-2} \rm atm$

68. Cobalt metal can be prepared by reducing cobalt(II) oxide with carbon monoxide.

$$CoO(s) + CO(g) = Co(s) + CO_2(g)$$
 $K_c = 4.90 \times 10^2 \text{ at } 550 \,^{\circ}\text{C}$

What concentration of CO remains in an equilibrium mixture with $[CO_2] = 0.100 M$? Solution

Write the equilibrium constant expression and solve for [CO].

$$K_{c} = \frac{[\text{CO}_{2}]}{[\text{CO}]} = \frac{0.100}{[\text{CO}]} = 4.90 \times 10^{2}$$
$$[\text{CO}] = \frac{0.100}{4.90 \times 10^{2}} = 2.04 \times 10^{-4} M$$

70. Sodium sulfate 10-hydrate, Na₂SO₄•10H₂O, dehydrates according to the equation

$$Na_2SO_4 \cdot 10H_2O(s) = Ma_2SO_4(s) + 10H_2O(g)$$
 $K_p = 4.08 \times 10^{-25} at 25 °C$

What is the pressure of water vapor at equilibrium with a mixture of Na₂SO₄•10H₂O and NaSO₄? Solution

Because two of the substances involved in the equilibrium are solids, their activities are 1, and their pressures are constant and do not appear in the equilibrium expression.

$$K_P = 4.08 \times 10^{-25} = (P_{\rm H_2O})^{10}$$

 $P_{\rm H_2O} = \sqrt[10]{4.08 \times 10^{-25}} = 3.64 \times 10^{-3} \text{ atm}$

72. A student solved the following problem and found the equilibrium concentrations to be $[SO_2] = 0.590 M$, $[O_2] = 0.0450 M$, and $[SO_3] = 0.260 M$. How could this student check the work without reworking the problem? The problem was: For the following reaction at 600 °C:

OpenStax *Chemistry 2e* 13.4: Equilibrium Calculations

 $2SO_2(g) + O_2(g) \square \square 2SO_3(g) \qquad K_c = 4.32$

What are the equilibrium concentrations of all species in a mixture that was prepared with $[SO_3] = 0.500 M$, $[SO_2] = 0 M$, and $[O_2] = 0.350 M$?

Solution

Calculate Q based on the calculated concentrations and see if it is equal to K_c . Because Q does equal 4.32, the system must be at equilibrium.

74. Assume that the change in concentration of N_2O_4 is small enough to be neglected in the following problem.

(a) Calculate the equilibrium concentration of both species in 1.00 L of a solution prepared from 0.129 mol of N₂O₄ with chloroform as the solvent.

 $N_2O_4(g) \square \square 2NO_2(g)$ $K_c = 1.07 \times 10^{-5}$ in chloroform

(b) Confirm that the change is small enough to be neglected. Solution

(a) Write the starting conditions, change, and equilibrium constant in tabular form.

	[NO ₂]	[N ₂ O ₄]
Initial concentration (M)	0	0.129
Change (<i>M</i>)	+2x	-x
Equilibrium concentration (M)	2x	0.129 <i>- x</i>

Since K is very small, ignore x in comparison with 0.129 M. The equilibrium expression is

$$K_c = 1.07 \times 10^{-5} = \frac{[\text{NO}_2]^2}{[\text{N}_2\text{O}_4]} = \frac{(2x)^2}{(0.129 - x)} = \frac{(2x)^2}{0.129}$$
$$r^2 = \frac{0.129 \times 1.07 \times 10^{-5}}{0.129} = 3.45 \times 10^{-7}$$

 $x = 5.87 \times 10^{-4}$

The concentrations are:

 $[NO_2] = 2x = (5.87 \times 10^{-4})(2) = 1.17 \times 10^{-3} M$

 $[N_2O_4] = 0.129 - x = 0.129 - 5.87 \times 10^{-4} = 0.128 M$:

(b) The assumption that x is negligibly small compared to 0.129 is confirmed by comparing the initial concentration of the N₂O₄ to its concentration at equilibrium (they differ by just 1 in the least significant digit's place).

76. Assume that the change in pressure of H_2S is small enough to be neglected in the following problem.

(a) Calculate the equilibrium pressures of all species in an equilibrium mixture that results from the decomposition of H_2S with an initial pressure of 0.824 atm.

 $2H_2S(g) = 2H_2(g) + S_2(g) \qquad K_P = 2.2 \times 10^{-6}$

(b) Confirm that the change is small enough to be neglected. Solution

(a) Write the balanced equation, and then set up a table with initial pressures and the changed pressures using x as the change in pressure. The simplest way to find the coefficients for the x values is to use the coefficient in the balanced equation.

	2H₂S(g) ╤	<u></u> 2H₂(g)	+ S ₂ (g)
Initial pressure (atm)	0.824	0	0
Change (atm)	-2x	+2 <i>x</i>	+ <i>x</i>
Equilibrium pressure (atm)	0.824 – 2 <i>x</i>	2 <i>x</i>	x

$$K_P = 2.2 \times 10^{-6} = \frac{(P_{\rm S_2})(P_{\rm H_2})^2}{(P_{\rm H_2})^2} = \frac{[x][2x]^2}{[0.824 - 2x]^2}$$

Neglecting the change in reactant concentration (2x), as instructed, yields:

$$2.2 \times 10^{-6} = \frac{[x][2x]^2}{[0.824]^2}$$

$$2.2 \times 10^{-6} = \frac{4x^3}{[0.679]}$$

$$1.494 \times 10^{-6} = 4x^3$$

$$3.73 \times 10^{-7} = x^3$$

$$7.20 \times 10^{-3} = x$$

Final equilibrium pressures:

$$[H_2S] = 0.824 - 2x = 0.824 - 2(7.20 \times 10^{-3}) = 0.824 - 0.0144 = 0.810 \text{ atm}$$

$$[H_2] = 2x = 2(7.2 \times 10^{-3}) = 0.014 \text{ atm}$$

$$[S_2] = [x] = 0.0072 \text{ atm}$$

(b) The assumption that 2x is negligibly small compared to 0.824 is confirmed by comparing the initial concentration of the H₂S to its concentration at equilibrium (0.824 atm versus 0.810 atm, a difference of less than 2%).

78. What are the concentrations of PCl₅, PCl₃, and Cl₂ in an equilibrium mixture produced by the decomposition of a sample of pure PCl₅ with [PCl₅] = 2.00 M?

 $PCl_{5}(g)$ $PCl_{3}(g) + Cl_{2}(g)$ $K_{c} = 0.0211$

Solution

As all species are gases and are in M concentration units, a simple K_c equilibrium can be solved using the balanced equation:

	PCl₅(g) =	\rightarrow PCl ₃ (g) ·	+ Cl ₂ (g)
Initial concentration (M)	2.00	0	0
Change (<i>M</i>)	-x	+x	+x
Equilibrium concentration (M)	2.00 <i>- x</i>	x	x
$K_c = 0.0211 = \frac{[PCl_3][Cl_2]}{[PCl_1]}$	$\frac{1}{x} = \frac{[x][x]}{[2.00 - x]}$	<u></u>	

$$0.0211 = \frac{x^2}{[2.00 - x]} = 0.0422 - 0.0211x = x^2$$

Begin by arranging the terms in the form of the quadratic equation: $ax^2 + bx + c = 0$ $x^{2} + 0.0211x - 0.0422 = 0$ Next, solve for x using the quadratic formula. $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-0.0211 \pm \sqrt{(0.0211)^{2} - 4(1)(-0.0422)}}{2(1)}$

$$= \frac{-0.0211 \pm \sqrt{0.0004452 + 0.1688}}{2} = \frac{-0.0211 \pm 0.4114}{2}$$

= 0.195 M or -0.216 M

Since concentrations must be positive, only the positive root (0.195) is physically significant. The final equilibrium concentrations are: $[PCl_5] = 2.00 - x = 2.00 - 0.195 = 1.80 M$; $[PCl_3] = [Cl_2] = x = 0.195 M$.

79. Calculate the number of grams of HI that are at equilibrium with 1.25 mol of H₂ and 63.5 g of iodine at 448 $^{\circ}$ C.

$$H_2 + I_2 = 2HI$$
 $K_c = 50.2 \text{ at } 448 \text{ °C}$

Solution

The number of moles of I₂ is

mol =
$$\frac{63.5 \text{ g}}{253.809 \text{ g mol}^{-1}}$$
 = 0.250 mol I₂
 $K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$

The unit for each concentration term is moles per liter. If the volume were known for this exercise, the number of moles in each term should be divided by this volume. However, there are two terms in the numerator and two terms in the denominator, so these volumes cancel one another. Consequently, for any expression with the same number of numerator terms as denominator terms, the number for moles can be used in place of moles per liter. In this exercise, the volume is not needed even though it is given.

 $(\text{mol HI})^2 = K \times \text{mol H}_2 \times \text{mol I}_2$ = 50.2 × 1.25 mol × 0.250 mol = 15.7 mol²

mol HI = $\sqrt{15.7 \text{ mol}^2}$ = 3.96 mol Mass(HI) = 3.96 mol × 127.9124 g/mol = 507 g

81. What is the minimum mass of CaCO₃ required to establish equilibrium at a certain temperature in a 6.50-L container if the equilibrium constant (K_c) is 0.50 for the decomposition reaction of CaCO₃ at that temperature?

 $CaCO_3(s)$ \Box \Box $CaO(s) + CO_2(g)$

Solution

At equilibrium the concentration of $CO_2 = K_c = 0.50 M$. The number of moles CO_2 in the system is then mol $CO_2 = 6.5 L \times 0.50 \text{ mol/L} = 3.3 \text{ mol}$. The minimum amount of CaCO₂ must then exceed:

 $3.3 \text{ mol } \text{CO}_2 \times \frac{1 \text{ mol } \text{CaCO}_3}{1 \text{ mol } \text{CO}_2} = 3.3 \text{ mol } \text{CaCO}_3$ $3.3 \text{ mol } \text{CO}_2 \times \frac{100.1 \text{ g } \text{CaCO}_3}{1 \text{ mol } \text{CaCO}_3} = 330 \text{ g}$

84. The equilibrium constant (K_c) for this reaction is 5.0 at a given temperature.

 $\operatorname{CO}(g) + \operatorname{H}_2\operatorname{O}(g) \square \square \operatorname{CO}_2(g) + \operatorname{H}_2(g)$

(a) On analysis, an equilibrium mixture of the substances present at the given temperature was found to contain 0.20 mol of CO, 0.30 mol of water vapor, and 0.90 mol of H₂ in a liter. How many moles of CO₂ were there in the equilibrium mixture?

(b) Maintaining the same temperature, additional H_2 was added to the system, and some water vapor was removed by drying. A new equilibrium mixture was thereby established containing 0.40 mol of CO, 0.30 mol of water vapor, and 1.2 mol of H_2 in a liter. How many moles of CO₂ were in the new equilibrium mixture? Compare this with the quantity in part (a), and discuss whether the second value is reasonable. Explain how it is possible for the water vapor concentration to be the same in the two equilibrium solutions even though some vapor was removed before the second equilibrium was established.

Solution

(a) For this reaction,
$$K_c = \frac{[CO_2][H_2]}{[CO][H_2O]} = 5.0$$
. The concentrations at equilibrium are 0.20M

CO, 0.30 *M* H₂O, and 0.90 *M* H₂. Substitution gives $K = 5.0 = \frac{[CO_2][0.90]}{[0.20][0.30]};$

$$[CO_2] = \frac{5.0(0.20)(0.30)}{0.90} = 0.33 M$$
; Amount of $CO_2 = 0.33 \text{ mol} \times 1 = 0.33 \text{ mol}.$

(b) At the particular temperature of reaction, K_c remains constant at 5.0. The new concentrations are 0.40 *M* CO, 0.30 *M* H₂O, and 1.2 *M* H₂.

$$\frac{[\rm CO_2](1.2)}{(0.40)(0.30)} = 5.0$$

 $[CO_2] = 0.50 M$

Amount of $CO_2 = 0.50 \text{ mol} \times 1 = 0.50 \text{ mol}$. Added H₂ forms some water as a result of a shift to the left after H₂ is added.

86. Consider the equilibrium

 $4NO_2(g) + 6H_2O(g)$ $4NH_3(g) + 7O_2(g)$

(a) What is the expression for the equilibrium constant (K_c) of the reaction?

(b) How must the concentration of NH₃ change to reach equilibrium if the reaction quotient is less than the equilibrium constant?

(c) If the reaction were at equilibrium, how would an increase in the volume of the reaction vessel affect the pressure of NO₂?

(d) If the change in the pressure of NO_2 is 28 torr as a mixture of the four gases reaches equilibrium, how much will the pressure of O_2 change?

Solution

(a) $K_c = \frac{[\mathrm{NH}_3]^4 [\mathrm{O}_2]^7}{[\mathrm{NO}_2]^4 [\mathrm{H}_2 \mathrm{O}]^6}$.

(b) Because [NH₃] is in the numerator of K_c , [NH₃] must increase for Q_c to reach K_c .

(c) The increase in system volume would lower the partial pressures of all reactants (including NO₂).

(d) The relative changes in pressures are related by the stoichiometry of the reaction.

$$P_{O_2} = \frac{7}{4} P_{NO_2} = \frac{7}{4} (28 \text{ torr}) = 49 \text{ torr}$$

88. Liquid N₂O₃ is dark blue at low temperatures, but the color fades and becomes greenish at higher temperatures as the compound decomposes to NO and NO₂. At 25 °C, a value of $K_P =$ 1.91 has been established for this decomposition. If 0.236 moles of N₂O₃ are placed in a 1.52-L vessel at 25 °C, calculate the equilibrium partial pressures of N₂O₃(*g*), NO₂(*g*), and NO(*g*). Solution

Write the balanced equilibrium expression. With all of the species as gases, it is a straightforward K_P problem to solve. However, *all* species must be converted to pressures, from other units related to concentration. For N₂O₃, with 0.236 mol in 1.52 L at 25 °C: PV = nRT

$$P = \frac{n}{V}RT$$

= $\frac{0.236 \text{ mol}}{1.52 \text{ L}} \times \frac{(0.08206 \text{ L} \text{ atm})(298.15 \text{ K})}{\text{mol} \text{ K}}$
= 3.80 atm

Write the balanced equation and the equilibrium changes:

	N₂O₃(g) ⇒	<u>→</u> NO(g)	+ NO ₂ (g)
Initial pressure (atm)	3.80	0	0
Change (atm)	—X	+x	+ <i>x</i>
Equilibrium pressure (atm)	3.80 <i>– x</i>	x	x

$$K_{P} = \frac{(P_{NO})(P_{NO_{2}})}{(P_{N_{2}O_{3}})}$$

$$1.91 = \frac{x^{2}}{(3.80 - x)}$$

$$7.258 - 1.91x = x^{2}$$

$$0 = x^{2} + 1.91x - 7.258$$

$$0 = ax^{2} + bx + c$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-1.91 \pm \sqrt{(1.91)^{2} - 4(1)(-7.258)}}{2(1)}$$

$$= \frac{-1.91 \pm \sqrt{3.648 + 29.032}}{2}$$

$$= \frac{-1.91 \pm \sqrt{32.680}}{2}$$

$$= \frac{-1.91 \pm 5.717}{2}$$

$$= 1.90 \text{ atm or } -3.81 \text{ atm}$$

As negative pressure is physically relevant and so the positive root is used. The final pressures are: $P_{N_{NO_2}} = 3.80 - x = 3.80 - 1.90 = 1.90$ atm and $P_{NO_2} = P_{NO_2} = x = 1.90$ atm.